Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Dual-atom catalysts (DACs) are emerging as highly efficient electrocatalysts, offering synergistic effects and high atomic utilization. Here, we introduce a scalable and facile electrochemical approach for the top-down synthesis of DACs supported on carbon materials via a two-time “plasma treatment + cathodic corrosion” procedure. Concretely, metal atoms in nanoparticles on cathode are etched under high negative potential, diffused over the electrode, captured by N doped carbon carriers in electrolyte and forming single-atom sites. After introducing additional N coordination sites adjacent to the primary metal single-atom sites via a secondary plasma processing and anchoring a second metal atom via a subsequent cathodic corrosion process, DACs are achieved. The as-prepared Pt DACs exhibit enhanced catalytic activity toward hydrogen evolution reaction (HER) with a low overpotential of 0.027 V at 10 mA·cm−2 and a Tafel slope of 29.9 mV·dec−1 as well as high stability. Importantly, the proposed electrochemical top-down synthetic route affords promising potential for scalable production of other homonuclear or heteronuclear DACs on multiple carbon substrates, advancing the practical application of DACs in electrocatalysis.
Jiang, X. L.; Chen, C.; Chen, J. J.; Yu, S. N.; Yu, W.; Shen, L. G.; Li, B. S.; Zhou, M. Z.; Lin, H. J. Atomically dispersed dual-atom catalysts: A new rising star in environmental remediation. Sci. Total Environ. 2024, 912, 169142.
Yang, X.; Xu, L. Y.; Li, Y. X. Do we achieve “1+1 > 2” in dual-atom or dual-single-atom catalysts. Coord. Chem. Rev. 2024, 516, 215961.
Yasin, G.; Kumar, A.; Ajmal, S.; Mushtaq, M. A.; Tabish, M.; Saad, A.; Assiri, M. A.; Nazir, M. T.; Zhuo, Q. F. Advances and perspectives on heteronuclear dual-atomic catalysts for prevailing the linear scaling relationship in electrocatalytic CO2 reduction. Coord. Chem. Rev. 2024, 501, 215589.
Yang, J. R.; Zeng, D. Q.; Li, J.; Dong, L. Q.; Ong, W. J.; He, Y. L. A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon. Chem. Eng. J. 2021, 404, 126376.
Xie, Y. H.; Chen, X.; Sun, K. A.; Zhang, J. Q.; Lai, W. H.; Liu, H.; Wang, G. X. Direct oxygen-oxygen cleavage through optimizing interatomic distances in dual single-atom electrocatalysts for efficient oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202301833.
Lei, L.; Guo, X. H.; Han, X.; Fei, L.; Guo, X.; Wang, D. G. From synthesis to mechanisms: In-depth exploration of the dual-atom catalytic mechanisms toward oxygen electrocatalysis. Adv. Mater. 2024, 36, 2311434.
Liang, M. F.; Shao, X. D.; Lee, H. Recent developments of dual single-atom catalysts for nitrogen reduction reaction. Chem.—Eur. J. 2024, 30, e202302843.
Roth-Zawadzki, A. M.; Nielsen, A. J.; Tankard, R. E.; Kibsgaard, J. Dual and triple atom electrocatalysts for energy conversion (CO2RR, NRR, ORR, OER, and HER): Synthesis, characterization, and activity evaluation. ACS Catal. 2024, 14, 1121–1145.
Zhou, X.; Han, K.; Li, K.; Pan, J.; Wang, X.; Shi, W. D.; Song, S. Y.; Zhang, H. J. Dual-site single-atom catalysts with high performance for three-way catalysis. Adv. Mater. 2022, 34, 2201859.
Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.
Liu, K. H.; Li, J.; Liu, Y. Y.; Wang, M. R.; Cui, H. T. Dual metal atom catalysts: Advantages in electrocatalytic reactions. J. Energy Chem. 2023, 79, 515–534.
Pu, T. C.; Ding, J. Q.; Zhang, F. X.; Wang, K.; Cao, N.; Hensen, E. J. M.; Xie, P. F. Dual atom catalysts for energy and environmental applications. Angew. Chem., Int. Ed. 2023, 62, e202305964.
Zhang, S. L.; Hou, M. C.; Zhai, Y. L.; Liu, H. J.; Zhai, D.; Zhu, Y. Q.; Ma, L.; Wei, B.; Huang, J. Dual-active-sites single-atom catalysts for advanced applications. Small 2023, 19, 2302739.
Singh, B.; Gawande, M. B.; Kute, A. D.; Varma, R. S.; Fornasiero, P.; McNeice, P.; Jagadeesh, R. V.; Beller, M.; Zbořil, R. Single-atom (iron-based) catalysts: Synthesis and applications. Chem. Rev. 2021, 121, 13620–13697.
Zhang, J.; Huang, Q. A.; Wang, J.; Wang, J.; Zhang, J. J.; Zhao, Y. F. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.
Zong, L. B.; Lu, F. H.; Li, P.; Fan, K. C.; Zhan, T. R.; Liu, P. R.; Jiang, L. X.; Chen, D. H.; Zhang, R. Y.; Wang, L. Thermal shock synthesis for loading sub-2 nm Ru nanoclusters on titanium nitride as a remarkable electrocatalyst toward hydrogen evolution reaction. Adv. Mater. 2024, 36, 2403525.
Zong, L. B.; Fan, K. C.; Cui, L. X.; Lu, F. H.; Liu, P. R.; Li, B.; Feng, S. H.; Wang, L. Constructing Fe-N4 sites through anion exchange-mediated transformation of Fe coordination environments in hierarchical carbon support for efficient oxygen reduction. Angew. Chem., Int. Ed. 2023, 62, e202309784.
Chen, Z. J.; Han, N.; Wei, W.; Chu, D. W.; Ni, B. J. Dual doping: An emerging strategy to construct efficient metal catalysts for water electrolysis. EcoEnergy 2024, 2, 114–140.
Han, G. F.; Li, F.; Rykov, A. I.; Im, Y. K.; Yu, S. Y.; Jeon, J. P.; Kim, S. J.; Zhou, W. H.; Ge, R. L.; Ao, Z. M. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 2022, 17, 403–407.
Matthews, T.; Mashola, T. A.; Adegoke, K. A.; Mugadza, K.; Fakude, C. T.; Adegoke, O. R.; Adekunle, A. S.; Ndungu, P.; Maxakato, N. W. Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coord. Chem. Rev. 2022, 467, 214600.
Wang, H. L.; Wang, X.; Pan, J.; Zhang, L. L.; Zhao, M.; Xu, J.; Liu, B.; Shi, W. D.; Song, S. Y.; Zhang, H. J. Ball-milling induced debonding of surface atoms from metal bulk for construing high-performance dual-site single-atom catalysts. Angew. Chem., Int. Ed. 2021, 60, 23154–23158.
Pu, T. C.; Ding, J. Q.; Tang, X.; Yang, K. W.; Wang, K.; Huang, B.; Dai, S.; He, Y.; Shi, Y.; Xie, P. F. Rational design of precious-metal single-atom catalysts for methane combustion. ACS Appl. Mater. Interfaces 2022, 14, 43141–43150.
Chen, H. Y.; Zhang, Y.; He, Q.; Zhang, H.; Xu, S.; He, X. H.; Ji, H. B. A facile route to fabricate double atom catalysts with controllable atomic spacing for the r-WGS reaction. J. Mater. Chem. A 2020, 8, 2364–2368.
Cui, T. C.; Liu, Q. M.; Chen, S. W. Dual-atom catalysts for electrochemical energy technologies. Energy Technol. 2023, 11, 2201456.
Ajmal, S.; Zhao, Y. L.; Yasin, G.; Boakye, F. O.; Tabish, M.; Alam, M. M.; Al-Sehemi, A. G.; Zhao, W. Transition metals based dual single-atom catalysts for oxygen electrocatalysis: Stunning advances and future prospects. ChemCatChem 2024, 16, e202301392.
Zhou, Y.; Song, E. H.; Chen, W.; Segre, C. U.; Zhou, J. D.; Lin, Y. C.; Zhu, C.; Ma, R. G.; Liu, P.; Chu, S. F. et al. Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv. Mater. 2020, 32, 2003484.
Wirtanen, T.; Prenzel, T.; Tessonnier, J. P.; Waldvogel, S. R. Cathodic corrosion of metal electrodes-how to prevent it in electroorganic synthesis. Chem. Rev. 2021, 121, 10241–10270.
Chen, X. T.; Koper, M. T. M. In situ EC-AFM study of the initial stages of cathodic corrosion of Pt(111) and polycrystalline Pt in acid solution. J. Phys. Chem. Lett. 2023, 14, 4997–5003.
Li, G. P.; Liu, H.; Yang, H.; Chen, X. Y.; Ji, K. M.; Yang, D. C.; Zhang, S.; Ma, X. B. Tuning product distributions of CO2 electroreduction over copper foil through cathodic corrosion. Chem. Eng. Sci. 2022, 263, 118142.
Hersbach, T. J. P.; Koper, M. T. M. Cathodic corrosion: 21st century insights into a 19th century phenomenon. Curr. Opin. Electrochem. 2021, 26, 100653.
Elnagar, M. M.; Kibler, L. A.; Jacob, T. Structural evolution of Au electrodes during cathodic corrosion: Initial stages of octahedral-nanocrystal growth. J. Electrochem. Soc. 2022, 169, 102509.
Hersbach, T. J. P.; McCrum, I. T.; Anastasiadou, D.; Wever, R.; Calle-Vallejo, F.; Koper, M. T. M. Alkali metal cation effects in structuring Pt, Rh, and Au surfaces through cathodic corrosion. ACS Appl. Mater. Interfaces 2018, 10, 39363–39379.
Yang, Y.; Shao, Y. T.; Lu, X. Y.; Yang, Y.; Ko, H. Y.; DiStasio, R. A. Jr. ; DiSalvo, F. J.; Muller, D. A.; Abruña, H. D. Elucidating cathodic corrosion mechanisms with operando electrochemical transmission electron microscopy. J. Am. Chem. Soc. 2022, 144, 15698–15708.
Feng, J. C.; Chen, D.; Sediq, A. S.; Romeijn, S.; Tichelaar, F. D.; Jiskoot, W.; Yang, J.; Koper, M. T. M. Cathodic corrosion of a bulk wire to nonaggregated functional nanocrystals and nanoalloys. ACS Appl. Mater. Interfaces 2018, 10, 9532–9540.
Vanrenterghem, B.; Bele, M.; Zepeda, F. R.; Šala, M.; Hodnik, N.; Breugelmans, T. Cutting the Gordian Knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5 nm. Appl. Catal. B: Environ. 2018, 226, 396–402.
Yanson, A. I.; Rodriguez, P.; Garcia-Araez, N.; Mom, R. V.; Tichelaar, F. D.; Koper, M. T. M. Cathodic corrosion: A quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 6346–6350.
Yang, Y. C.; Qiao, B. H.; Wu, Z. P.; Ji, X. B. Cathodic corrosion: An electrochemical approach to capture Zintl compounds for powder materials. J. Mater. Chem. A 2015, 3, 5328–5336.
Li, R.; Xu, J. S.; Zhao, Q. K.; Ren, W. S.; Zeng, R. G.; Pan, Q. F.; Yan, X. Y.; Ba, J. W.; Tang, T.; Luo, W. H. Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano Res. 2022, 15, 1838–1844.
Li, R.; Yan, X. Y.; Liu, M.; Zhao, Q. K.; Du, J.; Tan, X. X.; Ba, J. W.; Zeng, R. G.; Luo, W. H.; Xu, J. S. Cathodic corrosion as a facile and universal method for scalable preparation of powdery single atom electrocatalysts. Nano Res. 2024, 17, 4943–4950.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Xu, J. S.; Li, R.; Zeng, R. G.; Yan, X. Y.; Zhao, Q. K.; Ba, J. W.; Luo, W. H.; Meng, D. Q. Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 38106–38112.
Ouyang, B.; Zhang, Y. Q.; Wang, Y.; Zhang, Z.; Fan, H. J.; Rawat, R. S. Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance. J. Mater. Chem. A 2016, 4, 17801–17808.
Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207.
Xu, J. S.; Li, R.; Yan, X. Y.; Zhao, Q. K.; Zeng, R. G.; Ba, J. W.; Pan, Q. F.; Xiang, X.; Meng, D. Q. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 2022, 15, 3952–3958.
Zhao, Q. P.; Shi, W. X.; Zhang, J. W.; Tian, Z. Y.; Zhang, Z. M.; Zhang, P.; Wang, Y.; Qiao, S. Z.; Lu, T. B. Photo-induced synthesis of heteronuclear dual-atom catalysts. Nat. Synth. 2024, 3, 497–506.
Mekkering, M. J.; Laan, P. C. M.; Troglia, A.; Bliem, R.; Kizilkaya, A. C.; Rothenberg, G.; Yan, N. Bottom-up synthesis of platinum dual-atom catalysts on cerium oxide. ACS Catal. 2024, 14, 9850–9859.
Tian, S. B.; Wang, B. X.; Gong, W. B.; He, Z. Z.; Xu, Q.; Chen, W. X.; Zhang, Q. H.; Zhu, Y. Q.; Yang, J. R.; Fu, Q. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 2021, 12, 3181.
Wang, K. Y.; Chen, Y.; Liu, Y. B.; Zhang, H.; Shen, Y. X.; Pu, Z. Y.; Qiu, H. L.; Li, Y. M. Plasma boosted N, P, O co-doped carbon microspheres for high performance Zn ion hybrid supercapacitors. J. Alloys Compd. 2022, 901, 163588.
Zhong, R.; Lu, X. S.; Zheng, F.; Zhang, J. L.; Hong, R. Y. Effect of carrier gas on nitrogen-doped graphene in AC rotating arc plasma. J. Mater. Sci. 2023, 58, 8742–8756.
Evazzade, I.; Zagalskaya, A.; Alexandrov, V. Revealing elusive intermediates of platinum cathodic corrosion through DFT simulations. J. Phys. Chem. Lett. 2022, 13, 3047–3052.
Liu, Z.; Höfft, O.; Gödde, A. S.; Endres, F. In situ electrochemical XPS monitoring of the formation of anionic gold species by cathodic corrosion of a gold electrode in an ionic liquid. J. Phys. Chem. C 2021, 125, 26793–26800.
Elnagar, M. M.; Kibler, L. A.; Jacob, T. Metal deposition and electrocatalysis for elucidating structural changes of gold electrodes during cathodic corrosion. Green Chem. 2023, 25, 6238–6252.
Zhang, J.; Yu, A. M.; Sun, C. H. Computational exploration of dual atom catalysts loaded on defective graphene for oxygen reduction reaction. Appl. Surf. Sci. 2022, 605, 154534.
Ding, J. Y.; Peng, Z. M.; Wang, Z. W.; Zeng, C. H.; Feng, Y. H.; Yang, M. S.; Hu, G.; Luo, J.; Liu, X. J. Phosphorus-tungsten dual-doping boosts acidic overall seawater splitting performance over RuO x nanocrystals. J. Mater. Chem. A 2024, 12, 28023–28031.
Lu, Z. S.; Yang, H.; Liu, Q.; Luo, J.; Feng, L. G.; Chu, L.; Liu, X. J. Nb2AlC MAX nanosheets supported Ru nanocrystals as efficient catalysts for boosting pH-universal hydrogen production. Small 2024, 20, 2305434.
Liu, W. J.; Liu, W. X.; Hou, T.; Ding, J. Y.; Wang, Z. G.; Yin, R. L.; San, X.; Feng, L. G.; Luo, J.; Liu, X. J. Coupling Co–Ni phosphides for energy-saving alkaline seawater splitting. Nano Res. 2024, 17, 4797–4806.
Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16047–16051.
Da, Y. M.; Tian, Z. L.; Jiang, R.; Liu, Y.; Lian, X.; Xi, S. B.; Shi, Y.; Wang, Y. P.; Lu, H. T.; Cui, B. H. et al. Dual Pt–Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N4C2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 2023, 66, 1389–1397.
Li, S.; Yu, J.; Liu, Q.; Liu, J. Y.; Song, D. L.; Zhang, H. S.; Li, R. M.; Zhang, Y.; Wang, J. Preparation of carbon sponge loaded NiPt dual-metal single atom as self-supporting electrode based on inkjet printing technology for efficient hydrogen evolution. Carbon 2023, 215, 118456.
Ma, M. Y.; Xia, W.; Guo, X. Y.; Liu, W. H.; Cao, D.; Cheng, D. J. Constructing Ni3Se2-nanoisland-confined Pt1Mo1 dual-atom catalyst for efficient hydrogen evolution in basic media. Small Struct. 2024, 5, 2300284.
Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.
Zhang, L. Z.; Jia, Y.; Liu, H. L.; Zhuang, L. Z.; Yan, X. C.; Lang, C. G.; Wang, X.; Yang, D. J.; Huang, K. K.; Feng, S. H. et al. Charge polarization from atomic metals on adjacent graphitic layers for enhancing the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 9404–9408.
Zhao, W. K.; Luo, C.; Lin, Y.; Wang, G. B.; Chen, H. M.; Kuang, P. Y.; Yu, J. G. Pt–Ru dimer electrocatalyst with electron redistribution for hydrogen evolution reaction. ACS Catal. 2022, 12, 5540–5548.
Sher Shah, M. S. A.; Jang, G. Y.; Zhang, K.; Park, J. H. Transition metal carbide-based nanostructures for electrochemical hydrogen and oxygen evolution reactions. EcoEnergy 2023, 1, 344–374.
381
Views
60
Downloads
0
Crossref
0
Web of Science
1
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).