AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Cathodic corrosion as a facile and universal method for scalable preparation of dual-atom electrocatalysts

Rui Li1Tao Shao2Fudong Jiang1Dong Chen1Wenyong Jing1Jingwen Ba1Yulong Li1Yuhan Wu1Wenhua Luo1Jingsong Xu2 ( )
Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
Show Author Information

Graphical Abstract

A two-time “plasma treatment + cathodic corrosion” procedure is proposed for the top-down synthesis of dual-atom catalysts under mild operation conditions. The as-prepared Pt dual-atom catalysts exhibited a low overpotential of 0.027 V at 10 mA·cm−2 toward hydrogen evolution reaction.

Abstract

Dual-atom catalysts (DACs) are emerging as highly efficient electrocatalysts, offering synergistic effects and high atomic utilization. Here, we introduce a scalable and facile electrochemical approach for the top-down synthesis of DACs supported on carbon materials via a two-time “plasma treatment + cathodic corrosion” procedure. Concretely, metal atoms in nanoparticles on cathode are etched under high negative potential, diffused over the electrode, captured by N doped carbon carriers in electrolyte and forming single-atom sites. After introducing additional N coordination sites adjacent to the primary metal single-atom sites via a secondary plasma processing and anchoring a second metal atom via a subsequent cathodic corrosion process, DACs are achieved. The as-prepared Pt DACs exhibit enhanced catalytic activity toward hydrogen evolution reaction (HER) with a low overpotential of 0.027 V at 10 mA·cm−2 and a Tafel slope of 29.9 mV·dec−1 as well as high stability. Importantly, the proposed electrochemical top-down synthetic route affords promising potential for scalable production of other homonuclear or heteronuclear DACs on multiple carbon substrates, advancing the practical application of DACs in electrocatalysis.

Electronic Supplementary Material

Download File(s)
7264_ESM.pdf (2.8 MB)

References

[1]

Jiang, X. L.; Chen, C.; Chen, J. J.; Yu, S. N.; Yu, W.; Shen, L. G.; Li, B. S.; Zhou, M. Z.; Lin, H. J. Atomically dispersed dual-atom catalysts: A new rising star in environmental remediation. Sci. Total Environ. 2024, 912, 169142.

[2]

Yang, X.; Xu, L. Y.; Li, Y. X. Do we achieve “1+1 > 2” in dual-atom or dual-single-atom catalysts. Coord. Chem. Rev. 2024, 516, 215961.

[3]

Yasin, G.; Kumar, A.; Ajmal, S.; Mushtaq, M. A.; Tabish, M.; Saad, A.; Assiri, M. A.; Nazir, M. T.; Zhuo, Q. F. Advances and perspectives on heteronuclear dual-atomic catalysts for prevailing the linear scaling relationship in electrocatalytic CO2 reduction. Coord. Chem. Rev. 2024, 501, 215589.

[4]

Yang, J. R.; Zeng, D. Q.; Li, J.; Dong, L. Q.; Ong, W. J.; He, Y. L. A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon. Chem. Eng. J. 2021, 404, 126376.

[5]

Xie, Y. H.; Chen, X.; Sun, K. A.; Zhang, J. Q.; Lai, W. H.; Liu, H.; Wang, G. X. Direct oxygen-oxygen cleavage through optimizing interatomic distances in dual single-atom electrocatalysts for efficient oxygen reduction reaction. Angew. Chem., Int. Ed. 2023, 62, e202301833.

[6]

Lei, L.; Guo, X. H.; Han, X.; Fei, L.; Guo, X.; Wang, D. G. From synthesis to mechanisms: In-depth exploration of the dual-atom catalytic mechanisms toward oxygen electrocatalysis. Adv. Mater. 2024, 36, 2311434.

[7]

Liang, M. F.; Shao, X. D.; Lee, H. Recent developments of dual single-atom catalysts for nitrogen reduction reaction. Chem.—Eur. J. 2024, 30, e202302843.

[8]

Roth-Zawadzki, A. M.; Nielsen, A. J.; Tankard, R. E.; Kibsgaard, J. Dual and triple atom electrocatalysts for energy conversion (CO2RR, NRR, ORR, OER, and HER): Synthesis, characterization, and activity evaluation. ACS Catal. 2024, 14, 1121–1145.

[9]

Zhou, X.; Han, K.; Li, K.; Pan, J.; Wang, X.; Shi, W. D.; Song, S. Y.; Zhang, H. J. Dual-site single-atom catalysts with high performance for three-way catalysis. Adv. Mater. 2022, 34, 2201859.

[10]

Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

[11]

Liu, K. H.; Li, J.; Liu, Y. Y.; Wang, M. R.; Cui, H. T. Dual metal atom catalysts: Advantages in electrocatalytic reactions. J. Energy Chem. 2023, 79, 515–534.

[12]

Pu, T. C.; Ding, J. Q.; Zhang, F. X.; Wang, K.; Cao, N.; Hensen, E. J. M.; Xie, P. F. Dual atom catalysts for energy and environmental applications. Angew. Chem., Int. Ed. 2023, 62, e202305964.

[13]

Zhang, S. L.; Hou, M. C.; Zhai, Y. L.; Liu, H. J.; Zhai, D.; Zhu, Y. Q.; Ma, L.; Wei, B.; Huang, J. Dual-active-sites single-atom catalysts for advanced applications. Small 2023, 19, 2302739.

[14]

Singh, B.; Gawande, M. B.; Kute, A. D.; Varma, R. S.; Fornasiero, P.; McNeice, P.; Jagadeesh, R. V.; Beller, M.; Zbořil, R. Single-atom (iron-based) catalysts: Synthesis and applications. Chem. Rev. 2021, 121, 13620–13697.

[15]

Zhang, J.; Huang, Q. A.; Wang, J.; Wang, J.; Zhang, J. J.; Zhao, Y. F. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.

[16]

Zong, L. B.; Lu, F. H.; Li, P.; Fan, K. C.; Zhan, T. R.; Liu, P. R.; Jiang, L. X.; Chen, D. H.; Zhang, R. Y.; Wang, L. Thermal shock synthesis for loading sub-2 nm Ru nanoclusters on titanium nitride as a remarkable electrocatalyst toward hydrogen evolution reaction. Adv. Mater. 2024, 36, 2403525.

[17]

Zong, L. B.; Fan, K. C.; Cui, L. X.; Lu, F. H.; Liu, P. R.; Li, B.; Feng, S. H.; Wang, L. Constructing Fe-N4 sites through anion exchange-mediated transformation of Fe coordination environments in hierarchical carbon support for efficient oxygen reduction. Angew. Chem., Int. Ed. 2023, 62, e202309784.

[18]

Chen, Z. J.; Han, N.; Wei, W.; Chu, D. W.; Ni, B. J. Dual doping: An emerging strategy to construct efficient metal catalysts for water electrolysis. EcoEnergy 2024, 2, 114–140.

[19]

Han, G. F.; Li, F.; Rykov, A. I.; Im, Y. K.; Yu, S. Y.; Jeon, J. P.; Kim, S. J.; Zhou, W. H.; Ge, R. L.; Ao, Z. M. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 2022, 17, 403–407.

[20]

Matthews, T.; Mashola, T. A.; Adegoke, K. A.; Mugadza, K.; Fakude, C. T.; Adegoke, O. R.; Adekunle, A. S.; Ndungu, P.; Maxakato, N. W. Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coord. Chem. Rev. 2022, 467, 214600.

[21]

Wang, H. L.; Wang, X.; Pan, J.; Zhang, L. L.; Zhao, M.; Xu, J.; Liu, B.; Shi, W. D.; Song, S. Y.; Zhang, H. J. Ball-milling induced debonding of surface atoms from metal bulk for construing high-performance dual-site single-atom catalysts. Angew. Chem., Int. Ed. 2021, 60, 23154–23158.

[22]

Pu, T. C.; Ding, J. Q.; Tang, X.; Yang, K. W.; Wang, K.; Huang, B.; Dai, S.; He, Y.; Shi, Y.; Xie, P. F. Rational design of precious-metal single-atom catalysts for methane combustion. ACS Appl. Mater. Interfaces 2022, 14, 43141–43150.

[23]

Chen, H. Y.; Zhang, Y.; He, Q.; Zhang, H.; Xu, S.; He, X. H.; Ji, H. B. A facile route to fabricate double atom catalysts with controllable atomic spacing for the r-WGS reaction. J. Mater. Chem. A 2020, 8, 2364–2368.

[24]

Cui, T. C.; Liu, Q. M.; Chen, S. W. Dual-atom catalysts for electrochemical energy technologies. Energy Technol. 2023, 11, 2201456.

[25]

Ajmal, S.; Zhao, Y. L.; Yasin, G.; Boakye, F. O.; Tabish, M.; Alam, M. M.; Al-Sehemi, A. G.; Zhao, W. Transition metals based dual single-atom catalysts for oxygen electrocatalysis: Stunning advances and future prospects. ChemCatChem 2024, 16, e202301392.

[26]

Zhou, Y.; Song, E. H.; Chen, W.; Segre, C. U.; Zhou, J. D.; Lin, Y. C.; Zhu, C.; Ma, R. G.; Liu, P.; Chu, S. F. et al. Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv. Mater. 2020, 32, 2003484.

[27]

Wirtanen, T.; Prenzel, T.; Tessonnier, J. P.; Waldvogel, S. R. Cathodic corrosion of metal electrodes-how to prevent it in electroorganic synthesis. Chem. Rev. 2021, 121, 10241–10270.

[28]

Chen, X. T.; Koper, M. T. M. In situ EC-AFM study of the initial stages of cathodic corrosion of Pt(111) and polycrystalline Pt in acid solution. J. Phys. Chem. Lett. 2023, 14, 4997–5003.

[29]

Li, G. P.; Liu, H.; Yang, H.; Chen, X. Y.; Ji, K. M.; Yang, D. C.; Zhang, S.; Ma, X. B. Tuning product distributions of CO2 electroreduction over copper foil through cathodic corrosion. Chem. Eng. Sci. 2022, 263, 118142.

[30]

Hersbach, T. J. P.; Koper, M. T. M. Cathodic corrosion: 21st century insights into a 19th century phenomenon. Curr. Opin. Electrochem. 2021, 26, 100653.

[31]

Elnagar, M. M.; Kibler, L. A.; Jacob, T. Structural evolution of Au electrodes during cathodic corrosion: Initial stages of octahedral-nanocrystal growth. J. Electrochem. Soc. 2022, 169, 102509.

[32]

Hersbach, T. J. P.; McCrum, I. T.; Anastasiadou, D.; Wever, R.; Calle-Vallejo, F.; Koper, M. T. M. Alkali metal cation effects in structuring Pt, Rh, and Au surfaces through cathodic corrosion. ACS Appl. Mater. Interfaces 2018, 10, 39363–39379.

[33]

Yang, Y.; Shao, Y. T.; Lu, X. Y.; Yang, Y.; Ko, H. Y.; DiStasio, R. A. Jr. ; DiSalvo, F. J.; Muller, D. A.; Abruña, H. D. Elucidating cathodic corrosion mechanisms with operando electrochemical transmission electron microscopy. J. Am. Chem. Soc. 2022, 144, 15698–15708.

[34]

Feng, J. C.; Chen, D.; Sediq, A. S.; Romeijn, S.; Tichelaar, F. D.; Jiskoot, W.; Yang, J.; Koper, M. T. M. Cathodic corrosion of a bulk wire to nonaggregated functional nanocrystals and nanoalloys. ACS Appl. Mater. Interfaces 2018, 10, 9532–9540.

[35]

Vanrenterghem, B.; Bele, M.; Zepeda, F. R.; Šala, M.; Hodnik, N.; Breugelmans, T. Cutting the Gordian Knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5 nm. Appl. Catal. B: Environ. 2018, 226, 396–402.

[36]

Yanson, A. I.; Rodriguez, P.; Garcia-Araez, N.; Mom, R. V.; Tichelaar, F. D.; Koper, M. T. M. Cathodic corrosion: A quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 6346–6350.

[37]

Yang, Y. C.; Qiao, B. H.; Wu, Z. P.; Ji, X. B. Cathodic corrosion: An electrochemical approach to capture Zintl compounds for powder materials. J. Mater. Chem. A 2015, 3, 5328–5336.

[38]

Li, R.; Xu, J. S.; Zhao, Q. K.; Ren, W. S.; Zeng, R. G.; Pan, Q. F.; Yan, X. Y.; Ba, J. W.; Tang, T.; Luo, W. H. Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano Res. 2022, 15, 1838–1844.

[39]

Li, R.; Yan, X. Y.; Liu, M.; Zhao, Q. K.; Du, J.; Tan, X. X.; Ba, J. W.; Zeng, R. G.; Luo, W. H.; Xu, J. S. Cathodic corrosion as a facile and universal method for scalable preparation of powdery single atom electrocatalysts. Nano Res. 2024, 17, 4943–4950.

[40]

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

[41]

Xu, J. S.; Li, R.; Zeng, R. G.; Yan, X. Y.; Zhao, Q. K.; Ba, J. W.; Luo, W. H.; Meng, D. Q. Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 38106–38112.

[42]

Ouyang, B.; Zhang, Y. Q.; Wang, Y.; Zhang, Z.; Fan, H. J.; Rawat, R. S. Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance. J. Mater. Chem. A 2016, 4, 17801–17808.

[43]

Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207.

[44]

Xu, J. S.; Li, R.; Yan, X. Y.; Zhao, Q. K.; Zeng, R. G.; Ba, J. W.; Pan, Q. F.; Xiang, X.; Meng, D. Q. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 2022, 15, 3952–3958.

[45]

Zhao, Q. P.; Shi, W. X.; Zhang, J. W.; Tian, Z. Y.; Zhang, Z. M.; Zhang, P.; Wang, Y.; Qiao, S. Z.; Lu, T. B. Photo-induced synthesis of heteronuclear dual-atom catalysts. Nat. Synth. 2024, 3, 497–506.

[46]

Mekkering, M. J.; Laan, P. C. M.; Troglia, A.; Bliem, R.; Kizilkaya, A. C.; Rothenberg, G.; Yan, N. Bottom-up synthesis of platinum dual-atom catalysts on cerium oxide. ACS Catal. 2024, 14, 9850–9859.

[47]

Tian, S. B.; Wang, B. X.; Gong, W. B.; He, Z. Z.; Xu, Q.; Chen, W. X.; Zhang, Q. H.; Zhu, Y. Q.; Yang, J. R.; Fu, Q. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 2021, 12, 3181.

[48]

Wang, K. Y.; Chen, Y.; Liu, Y. B.; Zhang, H.; Shen, Y. X.; Pu, Z. Y.; Qiu, H. L.; Li, Y. M. Plasma boosted N, P, O co-doped carbon microspheres for high performance Zn ion hybrid supercapacitors. J. Alloys Compd. 2022, 901, 163588.

[49]

Zhong, R.; Lu, X. S.; Zheng, F.; Zhang, J. L.; Hong, R. Y. Effect of carrier gas on nitrogen-doped graphene in AC rotating arc plasma. J. Mater. Sci. 2023, 58, 8742–8756.

[50]

Evazzade, I.; Zagalskaya, A.; Alexandrov, V. Revealing elusive intermediates of platinum cathodic corrosion through DFT simulations. J. Phys. Chem. Lett. 2022, 13, 3047–3052.

[51]

Liu, Z.; Höfft, O.; Gödde, A. S.; Endres, F. In situ electrochemical XPS monitoring of the formation of anionic gold species by cathodic corrosion of a gold electrode in an ionic liquid. J. Phys. Chem. C 2021, 125, 26793–26800.

[52]

Elnagar, M. M.; Kibler, L. A.; Jacob, T. Metal deposition and electrocatalysis for elucidating structural changes of gold electrodes during cathodic corrosion. Green Chem. 2023, 25, 6238–6252.

[53]

Zhang, J.; Yu, A. M.; Sun, C. H. Computational exploration of dual atom catalysts loaded on defective graphene for oxygen reduction reaction. Appl. Surf. Sci. 2022, 605, 154534.

[54]

Ding, J. Y.; Peng, Z. M.; Wang, Z. W.; Zeng, C. H.; Feng, Y. H.; Yang, M. S.; Hu, G.; Luo, J.; Liu, X. J. Phosphorus-tungsten dual-doping boosts acidic overall seawater splitting performance over RuO x nanocrystals. J. Mater. Chem. A 2024, 12, 28023–28031.

[55]

Lu, Z. S.; Yang, H.; Liu, Q.; Luo, J.; Feng, L. G.; Chu, L.; Liu, X. J. Nb2AlC MAX nanosheets supported Ru nanocrystals as efficient catalysts for boosting pH-universal hydrogen production. Small 2024, 20, 2305434.

[56]

Liu, W. J.; Liu, W. X.; Hou, T.; Ding, J. Y.; Wang, Z. G.; Yin, R. L.; San, X.; Feng, L. G.; Luo, J.; Liu, X. J. Coupling Co–Ni phosphides for energy-saving alkaline seawater splitting. Nano Res. 2024, 17, 4797–4806.

[57]

Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16047–16051.

[58]

Da, Y. M.; Tian, Z. L.; Jiang, R.; Liu, Y.; Lian, X.; Xi, S. B.; Shi, Y.; Wang, Y. P.; Lu, H. T.; Cui, B. H. et al. Dual Pt–Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N4C2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 2023, 66, 1389–1397.

[59]

Li, S.; Yu, J.; Liu, Q.; Liu, J. Y.; Song, D. L.; Zhang, H. S.; Li, R. M.; Zhang, Y.; Wang, J. Preparation of carbon sponge loaded NiPt dual-metal single atom as self-supporting electrode based on inkjet printing technology for efficient hydrogen evolution. Carbon 2023, 215, 118456.

[60]

Ma, M. Y.; Xia, W.; Guo, X. Y.; Liu, W. H.; Cao, D.; Cheng, D. J. Constructing Ni3Se2-nanoisland-confined Pt1Mo1 dual-atom catalyst for efficient hydrogen evolution in basic media. Small Struct. 2024, 5, 2300284.

[61]

Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.

[62]

Zhang, L. Z.; Jia, Y.; Liu, H. L.; Zhuang, L. Z.; Yan, X. C.; Lang, C. G.; Wang, X.; Yang, D. J.; Huang, K. K.; Feng, S. H. et al. Charge polarization from atomic metals on adjacent graphitic layers for enhancing the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 9404–9408.

[63]

Zhao, W. K.; Luo, C.; Lin, Y.; Wang, G. B.; Chen, H. M.; Kuang, P. Y.; Yu, J. G. Pt–Ru dimer electrocatalyst with electron redistribution for hydrogen evolution reaction. ACS Catal. 2022, 12, 5540–5548.

[64]

Sher Shah, M. S. A.; Jang, G. Y.; Zhang, K.; Park, J. H. Transition metal carbide-based nanostructures for electrochemical hydrogen and oxygen evolution reactions. EcoEnergy 2023, 1, 344–374.

Nano Research
Article number: 94907264
Cite this article:
Li R, Shao T, Jiang F, et al. Cathodic corrosion as a facile and universal method for scalable preparation of dual-atom electrocatalysts. Nano Research, 2025, 18(4): 94907264. https://doi.org/10.26599/NR.2025.94907264
Topics:

381

Views

60

Downloads

0

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 19 November 2024
Revised: 10 January 2025
Accepted: 20 January 2025
Published: 28 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return