AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (30 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication | Open Access

Unconventional orthorhombic-phase graphite in Cretaceous foraminiferal fossils

Qingyi Sheng ( )Yiwei Xu
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
Show Author Information

Graphical Abstract

During burial and fossilization, the organic matter inside foraminifera transformed into unconventional orthorhombic graphite under extreme conditions.

Abstract

Fossils serve as faithful records and indicators of past geological events. However, accurately identifying organic remnants in these specimens remains challenging due to long-term degradation and transformation processes. In this study, we characterized Cretaceous foraminiferal fossils from different stratigraphic layers using optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Our analyses reveal an unconventional orthorhombic phase of graphite in some samples, suggesting exposure to extreme conditions—such as high temperature and high pressure—during the mid-Cretaceous. These findings not only provide valuable insights into the geological history of that period but also offer a promising avenue for understanding the chemical synthesis of novel carbon materials through polymorphic transformations.

Electronic Supplementary Material

Download File(s)
7262_ESM.pdf (3.6 MB)

References

[1]

Flannery-Sutherland, J. T.; Silvestro, D.; Benton, M. J. Global diversity dynamics in the fossil record are regionally heterogeneous. Nat. Commun. 2022, 13, 2751.

[2]

Agiadi, K.; Hohmann, N.; Gliozzi, E.; Thivaiou, D.; Bosellini, F. R.; Taviani, M.; Bianucci, G.; Collareta, A.; Londeix, L.; Faranda, C. et al. The marine biodiversity impact of the Late Miocene Mediterranean salinity crisis. Science 2024, 385, 986–991.

[3]

Sforna, M. C.; Loron, C. C.; Demoulin, C. F.; François, C.; Cornet, Y.; Lara, Y. J.; Grolimund, D.; Ferreira Sanchez, D.; Medjoubi, K.; Somogyi, A. et al. Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae. Nat. Commun. 2022, 13, 146.

[4]

Bernard, S.; Daval, D.; Ackerer, P.; Pont, S.; Meibom, A. Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes. Nat. Commun. 2017, 8, 1134.

[5]

Morard, R.; Hassenrück, C.; Greco, M.; Fernandez-Guerra, A.; Rigaud, S.; Douady, C. J.; Kucera, M. Renewal of planktonic foraminifera diversity after the Cretaceous Paleogene mass extinction by benthic colonizers. Nat. Commun. 2022, 13, 7135.

[6]

Cisneros-Lazaro, D.; Adams, A.; Guo, J. M.; Bernard, S.; Baumgartner, L. P.; Daval, D.; Baronnet, A.; Grauby, O.; Vennemann, T.; Stolarski, J. et al. Fast and pervasive diagenetic isotope exchange in foraminifera tests is species-dependent. Nat. Commun. 2022, 13, 113.

[7]

Hua, H.; Chen, Z.; Yuan, X. L.; Xiao, S. H.; Cai, Y. P. The earliest Foraminifera from southern Shaanxi, China. Sci. China Earth Sci. 2010, 53, 1756–1764.

[8]

Kryza, R.; Zalasiewicz, J.; Rodionov, N. Enigmatic sedimentary–volcanic successions in the central European Variscides: A Cambrian/Early Ordovician age for the Wojcieszów Limestone (Kaczawa Mountains, SW Poland) indicated by SHRIMP dating of volcanic zircons. Geol. J. 2008, 43, 415–430.

[9]

Dubicka, Z.; Gajewska, M.; Kozłowski, W.; Hallock, P.; Hohenegger, J. Photosynthetic activity in Devonian Foraminifera. Biogeosciences 2021, 18, 5719–5728.

[10]

Chaabane, S.; de Garidel-Thoron, T.; Meilland, J.; Sulpis, O.; Chalk, T. B.; Brummer, G. J. A.; Mortyn, P. G.; Giraud, X.; Howa, H.; Casajus, N. et al. Migrating is not enough for modern planktonic foraminifera in a changing ocean. Nature 2024, 636, 390–396.

[11]

Rosa Marín, A. Benthic foraminifera as bioindicators of coral reef health. Nat. Rev. Earth Environ. 2023, 4, 733–733.

[12]

Adebayo, M. B.; Bolton, C. T.; Marchant, R.; Bassinot, F.; Conrod, S.; de Garidel-Thoron, T. Environmental controls of size distribution of modern planktonic foraminifera in the tropical Indian Ocean. Geochem., Geophys., Geosyst. 2023, 24, e2022GC010586.

[13]

BouDagher-Fadel, M. K. Evolution, extinction, homology and homoplasy of the larger benthic foraminifera from the Carboniferous to the present day, as exemplified by planispiral-fusiform and discoidal forms. J. Earth Sci. 2022, 33, 1348–1361.

[14]

Dubicka, Z.; Gajewska, M.; Kozłowski, W.; Mikhalevich, V. Test structure in some pioneer multichambered Paleozoic foraminifera. Proc. Natl. Acad. Sci. USA 2021, 118, e2100656118.

[15]

Shi, Y. K.; Huang, H.; Shen, Z. H. New insights for ancient foraminifera through 3D visuals of fusulinids. Palaeoworld 2019, 28, 478–486.

[16]

Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem., Geophys., Geosyst. 2010, 11, Q03004.

[17]

Ma, Z. T.; Wang, Q. Y.; Liu, L. M.; Zhang, R. A.; Liu, Q. C.; Liu, P. G.; Wu, L. H.; Liu, C. Y.; Bai, Y.; Zhang, Y. D. et al. Low-coordination environment design of single Co atoms for efficient CO2 photoreduction. Nano Res. 2024, 17, 3745–3751.

[18]

Chen, X.; Liu, Y.; Wang, G. Q.; Kuang, Y. B.; Xiang, X. Q.; Di, G. R.; Yin, X. J.; Zhang, L.; Wang, K. X.; Cai, Q. Q. et al. Recent advances in photocatalytic CO2 cycloaddition reaction. Nano Res. 2024, 17, 9601–9619.

[19]

Chen, L. L.; Li, M. H.; Zhang, J. N. Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy. Nano Res. 2024, 17, 7880–7899.

[20]

Liu, W.; Li, H. Q.; Ou, P. F.; Mao, J.; Han, L. L.; Song, J.; Luo, J.; Xin, H. L. Isolated Cu–Sn diatomic sites for enhanced electroreduction of CO2 to CO. Nano Res. 2023, 16, 8729–8736.

[21]

Jia, Y. J.; Zhang, Y. D.; Lin, M. Q.; Cheng, Y. Y.; Xu, Y. J. The configuration of Auδ+–ZrO2δ− species induced activation enhances electrocatalytic CO2 to formate conversion. Nano Res. 2024, 17, 6006–6015.

[22]

Li, T.; Zhang, Z. Y.; Luo, D. C.; Xu, B. Y.; Zhang, R. J.; Yao, J. L.; Li, D.; Xie, T. Highly efficient photo-thermal synergistic catalysis of CO2 methanation over La1– x Ce x NiO3 perovskite-catalyst. Nano Res. 2024, 17, 7945–7956.

[23]

Guo, H. M.; Wu, L.; Nie, S. Y.; Yang, D. R.; Wang, X. Ultrathin zirconium-porphyrin based nanobelts as photo-coupled electrocatalysis for CH4 oxidation to CO. Nano Res. 2023, 16, 12641–12646.

[24]

Lv, J.; Wang, Y. H.; Liu, J. J.; Zhang, Z. C.; Ma, Y.; Zhou, Z. Y.; Ouyang, Y. Q.; Zhong, J.; Rao, X.; Sun, H. M. et al. Dry-gel synthesis of hierarchical Ni–La@S-1 catalysts with stabilized Ni–La bimetals nanoparticles for dry reforming of methane. Nano Res. 2024, 17, 10216–10226.

[25]

Gupta, N. S.; Briggs, D. E. G.; Collinson, M. E.; Evershed, R. P.; Michels, R.; Jack, K. S.; Pancost, R. D. Evidence for the in situ polymerisation of labile aliphatic organic compounds during the preservation of fossil leaves: Implications for organic matter preservation. Org. Geochem. 2007, 38, 499–522.

[26]

Dutta, S.; Mehrotra, R. C.; Paul, S.; Tiwari, R. P.; Bhattacharya, S.; Srivastava, G.; Ralte, V. Z.; Zoramthara, C. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber. Sci. Rep. 2017, 7, 10940.

[27]

Marvin, U. B.; Walker, D. A transient heating event in the history of a highlands troctolite from Apollo 12 soil 12033. J. Geophys. Res.: Solid Earth 1985, 90, C421–C429.

[28]

Manning, P. L.; Edwards, N. P.; Bergmann, U.; Anné, J.; Sellers, W. I.; van Veelen, A.; Sokaras, D.; Egerton, V. M.; Alonso-Mori, R.; Ignatyev, K. et al. Pheomelanin pigment remnants mapped in fossils of an extinct mammal. Nat. Commun. 2019, 10, 2250.

[29]

Johnson, P. G. The nearest stellar wind bubble or fossil supernova remnant. Astrophys. Space Sci. 1982, 82, 213–221.

[30]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[31]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[32]

BouDagher-Fadel, M.; Price, G. D. Global evolution and paleogeographic distribution of mid-Cretaceous orbitolinids. UCL Open: Environ. 2019, 1, e001.

[33]

Xu, Y. W.; Hu, X. M.; BouDagher-Fadel, M. K.; Sun, G. Y.; Lai, W.; Li, J.; Zhang, S. J. The major Late Albian transgressive event recorded in the epeiric platform of the Langshan Formation in central Tibet. Geol. Soc. Spec. Publ. 2020, 498, 211–232.

[34]

Xu, Y. W.; Hu, X. M.; Garzanti, E.; BouDagher-Fadel, M.; Sun, G. Y.; Lai, W.; Zhang, S. J. Mid-Cretaceous thick carbonate accumulation in Northern Lhasa (Tibet): Eustatic vs. tectonic control? Geol. Soc. Am. Bull. 2022, 134, 389–404.

[35]

Rao, X.; Skelton, P. W.; Sha, J. G.; Cai, H. W.; Iba, Y. Mid-Cretaceous rudists (Bivalvia: Hippuritida) from the Langshan Formation, Lhasa block, Tibet. Pap. Palaeontol. 2015, 1, 401–424.

[36]

BouDagher-Fadel, M. K.; Hu, X. M.; Price, G. D.; Sun, G. Y.; Wang, J. G.; An, W. Foraminiferal biostratigraphy and palaeoenvironmental analysis of the mid-Cretaceous limestones in the southern Tibetan Plateau. J. Foraminiferal Res. 2017, 47, 188–207.

[37]

Pan, G. T.; Ding, J.; Yao, D. S.; Wang, L. Q. Guide Book of 1:1,500,000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas; Cartographic Publishing House: Chengdu, 2004.

[38]

Bunaciu, A. A.; Udriştioiu, E. G.; Aboul-Enein, H. Y. X-ray diffraction: Instrumentation and applications. Crit. Rev. Anal. Chem. 2015, 45, 289–299.

[39]

Sakata, M.; Cooper, M. J. An analysis of the Rietveld refinement method. J. Appl. Crystallogr. 1979, 12, 554–563.

[40]

Zeitler, T. R.; Toby, B. H. Parallel processing for Rietveld refinement. J. Appl. Crystallogr. 2002, 35, 191–195.

[41]

Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580.

[42]

Zolotoyabko, E.; Caspi, E. N.; Fieramosca, J. S.; Von Dreele, R. B.; Marin, F.; Mor, G.; Addadi, L.; Weiner, S.; Politi, Y. Differences between Bond Lengths in Biogenic and Geological Calcite. Cryst. Growth Des. 2010, 10, 1207–1214.

[43]

Xie, J.; Zhang, L.; Xing, H. Y.; Bai, P. H.; Liu, B.; Wang, C. J.; Lei, K.; Wang, H.; Peng, S.; Yang, S. Gas sensing of ordered and disordered structure SiO2 and their adsorption behavior based on Quartz Crystal Microbalance. Sens. Actuators B: Chem. 2020, 305, 127479.

[44]

Fayos, J. Possible 3D Carbon Structures as Progressive Intermediates in Graphite to Diamond Phase Transition. J. Solid State Chem. 1999, 148, 278–285.

[45]

Newbury, D. E.; Ritchie, N. W. M. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J. Mater. Sci. 2015, 50, 493–518.

[46]
Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W. M.; Scott, J. H. J.; Joy, D. C. Quantitative analysis: The SEM/EDS elemental microanalysis k-ratio procedure for bulk specimens, step-by-step. In Scanning Electron Microscopy and X-Ray Microanalysis. Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W. M.; Scott, J. H. J.; Joy, D. C., Eds.; Springer: New York, 2018; pp 309–339.
[47]

Prada, F.; Haramaty, L.; Livnah, O.; Shaul, R.; Abramovich, S.; Mass, T.; Rosenthal, Y.; Falkowski, P. G. Proteomic characterization of a foraminiferal test’s organic matrix. Proc. Natl. Acad. Sci. USA 2024, 121, e2417845121.

[48]

Ren, J. K.; Xing, B. Y.; Luo, W.; Luo, B. Y.; Wu, X. F.; Yan, X.; Feng, W. C.; Wang, F. Y.; Cheng, C. J.; Mai, L. Low-temperature-pyrolysis preparation of nanostructured graphite towards rapid potassium storage with high initial Coulombic efficiency. Nano Res. 2024, 17, 5138–5147.

[49]

Zheng, W. J.; Sun, Z. N.; Wang, Y. M.; Xiong, H. M. Fluorescent carbon dots synthesized in solid phase and air for application in LEDs. Nano Res. 2024, 17, 8495–8503.

Nano Research
Article number: 94907262
Cite this article:
Sheng Q, Xu Y. Unconventional orthorhombic-phase graphite in Cretaceous foraminiferal fossils. Nano Research, 2025, 18(4): 94907262. https://doi.org/10.26599/NR.2025.94907262
Topics:

429

Views

129

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 January 2025
Revised: 15 January 2025
Accepted: 17 January 2025
Published: 01 April 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return