AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

New deltahedral architectures of rhodium-mediated Pn73− (Pn = Sb and Bi) cages

Lei QiaoChuan-Ling ChenZhong-Ming Sun ( )
State Key Laboratory of Element-Organic Chemistry, Tianjin Key Lab for Institution Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
Show Author Information

Graphical Abstract

We synthesized a series of heterometallic clusters on the basis of classical Pn73− cages via the reaction of K5Pn4 (Pn = Sb and Bi) with CpRh(PPh3)2 (Cp = C5H5, cyclopentadiene). Density functional theory (DFT) calculations revealed three-center–two-electron (3c–2e) RhPn2 delocalized bonds and weak Rh–Rh interactions for the stabilization of the title clusters. Importantly, this work provides a route to prepare polyhedral hybrid clusters on the basis of Pn73− cages.

Abstract

The reactions of K5Pn4 (Pn = Sb and Bi) and CpRh(PPh3)2 (Cp = C5H5, cyclopentadiene) in ethylenediamine (en) solutions resulted in a series of new Pn73− adducts, {Pn8[Rh(PPh3)]2}2−, {Sb7[Rh(PPh3)]2}2−, and {Sb7[Rh(PPh3)]3}2−, through slight variations in reaction conditions. These clusters represent rare electron-deficient group 15 polyhedral clusters comprising Pn73− with RhPPh3 units in an η5 coordination mode. Notably, the anionic clusters {Sb8[Rh(PPh3)]2}2−, {Sb7[Rh(PPh3)]2}2−, and {Sb7[Rh(PPh3)]3}2− are the first Rh-Sb binary Zintl clusters to date. The synthesis, structure, and bonding of these new deltahedral hybrids were studied for the first time, revealing a highly versatile chemistry associated with classical Pn73− cages and offering a pathway to prepare polyhedral hybrid clusters based on Pn73− cages.

Electronic Supplementary Material

Download File(s)
7253_ESM.pdf (4.2 MB)
7253_ESM_Complex_1.cif (1.2 MB)
7253_ESM_Complex_1checkcif.pdf (111.3 KB)

References

[1]

Wang, Y.; McGrady, J. E.; Sun, Z. M. Solution-based group 14 Zintl anions: New frontiers and discoveries. Acc. Chem. Res. 2021, 54, 1506–1516.

[2]

Mayer, K.; Weßing, J.; Fässler, T. F.; Fischer, R. A. Intermetalloid clusters: Molecules and solids in a dialogue. Angew. Chem., Int. Ed. 2018, 57, 14372–14393.

[3]
Qiao, L.; McGrady, J. E.; Sun, Z. M. Zintl chemistry: From Zintl ions to Zintl clusters. In Comprehensive Inorganic Chemistry III, 3rd ed.; Reedijk, J.; Poeppelmeier, K. R., Eds.; Elsevier: Amsterdam, 2023; pp 903–933.
[4]

Pan, F. X.; Peerless, B.; Dehnen, S. Bismuth-based metal clusters-from molecular aesthetics to contemporary materials science. Acc. Chem. Res. 2023, 56, 1018–1030.

[5]

Wilson, R. J.; Lichtenberger, N.; Weinert, B.; Dehnen, S. Intermetalloid and heterometallic clusters combining p-block (semi)metals with d- or f-block metals. Chem. Rev. 2019, 119, 8506–8554.

[6]

Turbervill, R. S. P.; Goicoechea, J. M. From clusters to unorthodox pnictogen sources: Solution-phase reactivity of [E7]3− (E = P–Sb) anions. Chem. Rev. 2014, 114, 10807–10828.

[7]

van Ijzendoorn, B.; Mehta, M. Frontiers in the solution-phase chemistry of homoatomic group 15 Zintl clusters. Dalton Trans. 2020, 49, 14758–14765.

[8]
Gärtner, S.; Korber, N. Zintl anions. In Comprehensive Inorganic Chemistry II, 2nd ed.; Reedijk, J.; Poeppelmeier, K., Eds.; Elsevier: Amsterdam, 2013; pp 251–267.
[9]

Ahlrichs, R.; Fenske, D.; Fromm, K.; Krautscheid, H.; Krautscheid, U.; Treutler, O. Zintl anions as starting compounds for the synthesis of polynuclear transition metal complexes. Chem.—Eur. J. 1996, 2, 238–244.

[10]

Knapp, C.; Zhou, B. B.; Denning, M. S.; Rees, N. H.; Goicoechea, J. M. Reactivity studies of group 15 Zintl ions towards homoleptic post-transition metal organometallics: A ‘bottom-up’ approach to bimetallic molecular clusters. Dalton Trans. 2010, 39, 426–436.

[11]

Qian, M. C.; Reber, A. C.; Ugrinov, A.; Chaki, N. K.; Mandal, S.; Saavedra, H. M.; Khanna, S. N.; Sen, A.; Weiss, P. S. Cluster-assembled materials: Toward nanomaterials with precise control over properties. ACS Nano 2010, 4, 235–240.

[12]

Mandal, S.; Reber, A. C.; Qian, M. C.; Liu, R.; Saavedra, H. M.; Sen, S.; Weiss, P. S.; Khanna, S. N.; Sen, A. Synthesis, structure and band gap energy of covalently linked cluster-assembled materials. Dalton Trans. 2012, 41, 12365–12377.

[13]

Mandal, S.; Reber, A. C.; Qian, M. C.; Liu, R.; Saavedra, H. M.; Sen, S.; Weiss, P. S.; Khanna, S. N.; Sen, A. On the stability of an unsupported mercury-mercury bond linking group 15 Zintl clusters. Dalton Trans. 2012, 41, 5454–5457.

[14]

Knapp, C. M.; Large, J. S.; Rees, N. H.; Goicoechea, J. M. A versatile salt-metathesis route to heteroatomic clusters derived from phosphorus and arsenic Zintl anions. Dalton Trans. 2011, 40, 735–745.

[15]

Eichhorn, B. W.; Haushalter, R. C.; Huffman, J. C. Insertion of Cr(CO)3 into As73 to form [ As7Cr(CO)3: An inorganic nortricyclane-to-norbornadiene conversion. Angew. Chem., Int. Ed. 1989, 28, 1032–1033.

[16]

Charles, S.; Eichhorn, B. W.; Rheingold, A. L.; Bott, S. G. Synthesis, structure, and properties of the [E7M(CO)3]3− complexes where E = P, As, Sb and M = Cr, Mo, W. J. Am. Chem. Soc. 1994, 116, 8077–8086.

[17]

Bolle, U.; Tremel, W. Insertion of a transition metal fragment into a heptaantimonide(3−) anion: Synthesis and structure of [Sb7Mo(CO)3]3−. J. Chem. Soc., Chem. Commun. 1994, 217–219.

[18]

Li, Z.; Ouyang, D.; Xu, L. [Bi7M3(CO)3]2− (M = Co, Rh): A new architype of 10-vertex deltahedral hybrids by the unprecedented polycyclic η5-coordination addition of Bi73− and trimetallic fragments. Chem. Commun. 2019, 55, 6783–6786.

[19]

Gascoin, F.; Sevov, S. C. Synthesis and characterization of the “metallic salts” A5Pn4 (A = K, Rb, Cs and Pn = As, Sb, Bi) with isolated zigzag tetramers of Pn44− and an extra delocalized electron. Inorg. Chem. 2001, 40, 5177–5181.

[20]

Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J. Chem. Soc. A 1966, 1711–1732.

[21]

Wakatsuki, Y.; Yamazaki, H. Some reactions of π-cyclopentadienylbis(triphenylphosphine) rhodium(I). J. Organomet. Chem. 1974, 64, 393–402.

[22]

Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3–8.

[23]

Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.

[24]

Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2009, 65, 148–155.

[25]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision D. 01; Gaussian, Inc.: Wallingford, CT, USA, 2013.
[26]

Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.

[27]

Zubarev, D. Y.; Boldyrev, A. I. Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217.

[28]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[29]

Perla, L. G.; Oliver, A. G.; Sevov, S. C. Bi73−: The missing family member, finally isolated and characterized. Inorg. Chem. 2015, 54, 872–875.

[30]

Xu, L.; Ugrinov, A.; Sevov, S. C. Stabilization of ozone-like [Bi3]3− in the heteroatomic closo-clusters [Bi3Cr2(CO)6]3− and [Bi3Mo2(CO)6]3−. J. Am. Chem. Soc. 2001, 123, 4091–4092.

[31]

Goicoechea, J. M.; Hull, M. W.; Sevov, S. C. Heteroatomic deltahedral clusters: Synthesis and structures of closo-[Bi3Ni4(CO)6]3−, closo-[Bi4Ni4(CO)6]2−, the open cluster [Bi3Ni6(CO)9]3−, and the Intermetalloid closo-[Ni x @{Bi6Ni6(CO)8}]4−. J. Am. Chem. Soc. 2007, 129, 7885–7893.

[32]

Qiao, L.; Yang, T.; Frenking, G.; Sun, Z. M. [Ga@Bi10(NbMes)2]3−: A linear Nb–GaI–Nb filament coordinated by a bismuth cage. Chem. Commun. 2023, 59, 4024–4027.

[33]

Qiao, L.; Chen, D. D.; Zhu, J.; Muñoz-Castroc, A.; Sun, Z. M. [Bi6Mo3(CO)9]4−: A multiple local σ-aromatic cluster containing a distorted Bi6 triangular prism. Chem. Commun. 2021, 57, 3656–3659.

[34]

Lichtenberger, N.; Spang, N.; Eichhöfer, A.; Dehnen, S. Between localization and delocalization: Ru(cod)2+ units in the Zintl clusters [Bi9{Ru(cod)}2]3− and [Tl2Bi6{Ru(cod)}]2−. Angew. Chem., Int. Ed. 2017, 56, 13253–13258.

[35]

Femoni, C.; Bussoli, G.; Ciabatti, I.; Ermini, M.; Hayatifar, M.; Iapalucci, M. C.; Ruggieri, S.; Zacchini, S. Interstitial bismuth atoms in icosahedral rhodium cages: Syntheses, characterizations, and molecular structures of the [Bi@Rh12(CO)27]3−, [(Bi@Rh12(CO)26)2Bi]5−, [Bi@Rh14(CO)27Bi2]3−, and [Bi@Rh17(CO)33Bi2]4− carbonyl clusters. Inorg. Chem. 2017, 56, 6343–6351.

[36]

Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 1964, 41, 3199–3204.

[37]

Charles, S.; Eichhorn, B. W.; Bott, S. G. Synthesis and structure of [Sb7Ni3(CO)3]3−: A new structural type for nido 10-vertex polyhedral clusters. J. Am. Chem. Soc. 1993, 115, 5837–5838.

[38]

Critchlow, S. C.; Corbett, J. D. Homopolyatomic anions of the post transition elements. Synthesis and structure of potassium-crypt salts of the tetraantimonide(2−) and heptaantimonide(3−) anions, Sb42− and Sb73−. Inorg. Chem. 1984, 23, 770–774.

[39]

Adolphson, D. G.; Corbett, J. D.; Merryman, D. J. Stable homopolyatomic anions of the post-transition metals. “Zintl ions”. The synthesis and structure of a salt containing the heptantimonide(3−) anion. J. Am. Chem. Soc. 1976, 98, 7234–7239.

[40]

Femoni, C.; Funaioli, T.; Iapalucci, C. M.; Ruggieri, S.; Zacchini, S. Rh–Sb nanoclusters: Synthesis, structure, and electrochemical studies of the atomically precise [Rh20Sb3(CO)36]3− and [Rh21Sb2(CO)38]5− carbonyl compounds. Inorg. Chem. 2020, 59, 4300–4310.

[41]

Bolle, U.; Tremel. W. [Na(2,2,2,-crypt)]3[Sb11], a salt containing the undecaantimonide(3−) anion. J. Chem. Soc., Chem. Commun. 1992, 91–93.

[42]

Zhai, J.; Xu, L. Synthesis and crystal structure of [K(2,2,2-crypt)]3Sb11. Chin. J. Struct. Chem. 2011, 30, 1091–1094.

[43]

Mingos, D. M. P. A general theory for cluster and ring compounds of the main group and transition elements. Nat. Phys. Sci. 1972, 236, 99–102.

[44]

Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 1971, 792–793.

[45]

Mingos, D. M. P. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 1984, 17, 311–319.

[46]

Zhang, W. Q.; Tkachenko, N. V.; Qiao, L.; Boldyrev, A. I.; Sun, Z. M. Synthesis and structure of binary copper/silver-arsenic clusters derived from Zintl ion As73−. Chin. J. Chem. 2022, 40, 65–70.

[47]

Chen, W. X.; Tkachenko, N. V.; Muñoz-Castro, A.; Boldyrev, A. I.; Sun, Z. M. Ruthenium-mediated assembly and enhanced stability of heterometallic polystannides [Ru2Sn19]4− and [Ru2Sn20]6−. Nano Res. 2022, 15, 5705–5711.

[48]

Popov, I. A.; Pan, F. X.; You, X. R.; Li, L. J.; Matito, E.; Liu, C.; Zhai, H. J.; Sun, Z. M.; Boldyrev, A. I. Peculiar all-metal σ-aromaticity of the [Au2Sb16]4− anion in the solid state. Angew. Chem., Int. Ed. 2016, 55, 15344–15346.

[49]

Qiao, L.; Zhang, C.; Shu, C. C.; Morgan, H. W. T.; McGrady, J. E.; Sun, Z. M. [Cu4@E18]4− (E = Sn, Pb): Fused derivatives of endohedral stannaspherene and plumbaspherene. J. Am. Chem. Soc. 2020, 142, 13288–13293.

[50]

Liu, C.; Tkachenko, N. V.; Popov, I. A.; Fedik, N.; Min, X.; Xu, C. Q.; Li, J.; McGrady, J. E.; Boldyrev, A. I.; Sun, Z. M. Structure and bonding in [Sb@In8Sb12]3− and [Sb@In8Sb12]5−. Angew. Chem., Int. Ed. 2019, 58, 8367–8371.

Nano Research
Article number: 94907253
Cite this article:
Qiao L, Chen C-L, Sun Z-M. New deltahedral architectures of rhodium-mediated Pn73− (Pn = Sb and Bi) cages. Nano Research, 2025, 18(3): 94907253. https://doi.org/10.26599/NR.2025.94907253
Topics:

366

Views

57

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 November 2024
Revised: 01 January 2025
Accepted: 13 January 2025
Published: 19 February 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return