AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Friction-induced ultrafast charge transfer in van der Waals heterostructures

Chong Wang1,§Rui Han1,§Yutang Wang2Shihong Chen1Haowen Xu1Shuchun Huang1Zejun Sun1Huixian Liu1Jianbin Luo1( )Dameng Liu1( )Huan Liu1( )
State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

§ Chong Wang and Rui Han contributed equally to this work.

Show Author Information

Graphical Abstract

The evidence of friction-induced charge transfer in WS2/graphene heterostructures was demonstrated with ultrafast friction energy dissipation detecting technique.

Abstract

van der Waals heterostructures stacked by transition metal dichalcogenides and graphene provide a new opportunity for exploring superlubricity. However, the further reduction of friction is limited by the unavoidable charge transfer in the heterostructures. The dynamics of charge transfer occur at picosecond time scale, which cannot be detected by traditional friction instruments, making the friction mechanism of charge transfer unclear. Here, we investigate friction-induced charge transfer in WS2/graphene heterostructures with ultrafast friction energy dissipation detecting technique. The observed friction exhibits a strong linear relationship with the dissipation rate of interlayer charge transfer. By modulating the band structure of heterostructures, the dissipation rate of interlayer charge transfer can be efficiently tuned from 0.72 to 0.17 ps−1, resulting in a ~ 35% reduction in friction. This work gives the direct explanation of friction-induced charge transfer, which enables the high-performance micro-electro-mechanical systems and new insight into the origin of friction from the perspective of ultrafast electron dynamics.

Electronic Supplementary Material

Download File(s)
7247_ESM.pdf (2.3 MB)

References

[1]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[2]

Lu, X. B.; Stepanov, P.; Yang, W.; Xie, M.; Aamir, M. A.; Das, I.; Urgell, C.; Watanabe, K.; Taniguchi, T.; Zhang, G. Y. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 2019, 574, 653–657.

[3]

Ma, L. G.; Nguyen, P. X.; Wang, Z. F.; Zeng, Y. X.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Mak, K. F.; Shan, J. Strongly correlated excitonic insulator in atomic double layers. Nature 2021, 598, 585–589.

[4]

Liu, H.; Wang, J. C.; Chen, S. H.; Sun, Z. J.; Xu, H. W.; Han, Y. S.; Wang, C.; Liu, H. X.; Huang, L.; Luo, J. B. et al. Direct visualization of dark interlayer exciton transport in moiré superlattices. Nano Lett. 2024, 24, 339–346.

[5]

Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous hall effect in a moiré heterostructure. Science 2020, 367, 900–903.

[6]

Chen, X. Q.; Shehzad, K.; Gao, L.; Long, M. S.; Guo, H.; Qin, S. C.; Wang, X. M.; Wang, F. Q.; Shi, Y.; Hu, W. D. et al. Graphene hybrid structures for integrated and flexible optoelectronics. Adv. Mater. 2020, 32, 1902039.

[7]

Flöry, N.; Ma, P.; Salamin, Y.; Emboras, A.; Taniguchi, T.; Watanabe, K.; Leuthold, J.; Novotny, L. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 2020, 15, 118–124.

[8]

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

[9]

Huang, X. Y.; Xiang, X. J.; Nie, J. H.; Peng, D. L.; Yang, F. W.; Wu, Z. H.; Jiang, H. Y.; Xu, Z. P.; Zheng, Q. S. Microscale Schottky superlubric generator with high direct-current density and ultralong life. Nat. Commun. 2021, 12, 2268.

[10]

Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.

[11]

Hod, O.; Meyer, E.; Zheng, Q. S.; Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature 2018, 563, 485–492.

[12]

Androulidakis, C.; Koukaras, E. N.; Paterakis, G.; Trakakis, G.; Galiotis, C. Tunable macroscale structural superlubricity in two-layer graphene via strain engineering. Nat. Commun. 2020, 11, 1595.

[13]

Liao, M. Z.; Nicolini, P.; Du, L. J.; Yuan, J. H.; Wang, S. P.; Yu, H.; Tang, J.; Cheng, P.; Watanabe, K.; Taniguchi, T. et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nat. Mater. 2022, 21, 47–53.

[14]

Büch, H.; Rossi, A.; Forti, S.; Convertino, D.; Tozzini, V.; Coletti, C. Superlubricity of epitaxial monolayer WS2 on graphene. Nano Res. 2018, 11, 5946–5956.

[15]

Park, J. Y.; Ogletree, D. F.; Thiel, P. A.; Salmeron, M. Electronic control of friction in silicon pn junctions. Science 2006, 313, 186.

[16]

Shi, B.; Gan, X. H.; Yu, K.; Lang, H. J.; Cao, X. A.; Zou, K.; Peng, Y. T. Electronic friction and tuning on atomically thin MoS2. npj 2D Mater. Appl. 2022, 6, 39.

[17]

Yildiz, D.; Kisiel, M.; Gysin, U.; Gürlü, O.; Meyer, E. Mechanical dissipation via image potential states on a topological insulator surface. Nat. Mater. 2019, 18, 1201–1206.

[18]

Song, A. S.; Shi, R. Y.; Lu, H. L.; Wang, X. Y.; Hu, Y. Z.; Gao, H. J.; Luo, J. B.; Ma, T. B. Fluctuation of interfacial electronic properties induces friction tuning under an electric field. Nano Lett. 2022, 22, 1889–1896.

[19]

Sun, J. H.; Zhang, X.; Du, S. Y.; Pu, J. B.; Wang, Y.; Yuan, Y. P.; Qian, L. M.; Francisco, J. S. Charge density evolution governing interfacial friction. J. Am. Chem. Soc. 2023, 145, 5536–5544.

[20]

Aeschlimann, S.; Rossi, A.; Chávez-Cervantes, M.; Krause, R.; Arnoldi, B.; Stadtmüller, B.; Aeschlimann, M.; Forti, S.; Fabbri, F.; Coletti, C. et al. Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures. Sci. Adv. 2020, 6, eaay0761.

[21]

Yuan, L.; Chung, T. F.; Kuc, A.; Wan, Y.; Xu, Y.; Chen, Y. P.; Heine, T.; Huang, L. B. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 2018, 4, e1700324.

[22]

He, J. Q.; Kumar, N.; Bellus, M. Z.; Chiu, H. Y.; He, D. W.; Wang, Y. S.; Zhao, H. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures. Nat. Commun. 2014, 5, 5622.

[23]

Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949–983.

[24]

Qi, Y. Z.; Liu, J.; Zhang, J.; Dong, Y. L.; Li, Q. Y. Wear resistance limited by step edge failure: The rise and fall of graphene as an atomically thin lubricating material. ACS Appl. Mater. Interfaces 2017, 9, 1099–1106.

[25]

Zhang, S.; Yao, Q. Z.; Chen, L. X.; Jiang, C. X.; Ma, T. B.; Wang, H. M.; Feng, X. Q.; Li, Q. Y. Dual-scale stick-slip friction on graphene/ h-BN moiré superlattice structure. Phys. Rev. Lett. 2022, 128, 226101.

[26]

Yuan, L.; Huang, L. B. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402–7408.

[27]

Liu, Y. S.; Hu, X. M.; Wang, T.; Liu, D. M. Reduced binding energy and layer-dependent exciton dynamics in monolayer and multilayer WS2. ACS Nano 2019, 13, 14416–14425.

[28]

Froehlicher, G.; Lorchat, E.; Berciaud, S. Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Phys. Rev. X 2018, 8, 011007.

[29]

Liu, H.; Wang, J. C.; Liu, Y. S.; Wang, Y.; Xu, L. J.; Huang, L.; Liu, D. M.; Luo, J. B. Visualizing ultrafast defect-controlled interlayer electron–phonon coupling in van der waals heterostructures. Adv. Mater. 2022, 34, 2106955.

[30]

Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

[31]

Raja, A.; Chaves, A.; Yu, J.; Arefe, G.; Hill, H. M.; Rigosi, A. F.; Berkelbach, T. C.; Nagler, P.; Schüller, C.; Korn, T. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 2017, 8, 15251.

[32]

Wang, C.; Han, R.; Wang, Y. T.; Chen, S. H.; Xu, H. W.; Huang, S. C.; Sun, Z. J.; Li, Z. H.; Luo, J. B.; Liu, D. M. et al. Controlling friction energy dissipation by ultrafast interlayer electron-phonon coupling in WS2/graphene heterostructures. Nano Energy 2024, 132, 110371.

[33]

Wang, C.; Liu, H. X.; Wang, J. C.; Han, Y. S.; Sun, Z. J.; Xu, H. W.; Liu, H.; Liu, D. M.; Luo, J. B. Non-contact friction energy dissipation via hysteretic behavior on a graphite surface. Nanoscale Adv. 2022, 4, 4782–4788.

[34]

Shi, B.; Gan, X. H.; Zhang, C.; Lang, H. J.; Zou, K.; Bu, T. Z.; Peng, Y. T. Investigating the effect of nanoscale triboelectrification on nanofriction in insulators. Nano Energy 2022, 91, 106620.

[35]

Kisiel, M.; Gnecco, E.; Gysin, U.; Marot, L.; Rast, S.; Meyer, E. Suppression of electronic friction on Nb films in the superconducting state. Nat. Mater. 2011, 10, 119–122.

[36]

Langer, M.; Kisiel, M.; Pawlak, R.; Pellegrini, F.; Santoro, G. E.; Buzio, R.; Gerbi, A.; Balakrishnan, G.; Baratoff, A.; Tosatti, E. et al. Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface. Nat. Mater. 2014, 13, 173–177.

[37]

Kisiel, M.; Brovko, O. O.; Yildiz, D.; Pawlak, R.; Gysin, U.; Tosatti, E.; Meyer, E. Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO3 surfaces. Nat. Commun. 2018, 9, 2946.

[38]

Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019, 90, 011101.

[39]

Stipe, B. C.; Mamin, H. J.; Stowe, T. D.; Kenny, T. W.; Rugar, D. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 2001, 87, 096801.

[40]

Volokitin, A. I.; Persson, B. N. J. Adsorbate-induced enhancement of electrostatic noncontact friction. Phys. Rev. Lett. 2005, 94, 086104.

[41]

Zhong, J.; Li, J. Y.; Liu, J.; Xiang, Y. F.; Feng, H.; Liu, R. M.; Li, W.; Wang, X. H. Room-temperature strong coupling of few-exciton in a monolayer WS2 with plasmon and dispersion deviation. Nano Lett. 2024, 24, 1579–1586.

[42]

Liu, X. Y.; Zhang, P. T.; Wang, S. Y.; Fang, Y. Q.; Wu, P. H.; Xiang, Y.; Chen, J. P.; Zhao, C. D.; Zhang, X.; Zhao, W. et al. High intrinsic phase stability of ultrathin 2M WS2. Nat. Commun. 2024, 15, 1263.

[43]

Ceballos, F.; Ju, M. G.; Lane, S. D.; Zeng, X. C.; Zhao, H. Highly efficient and anomalous charge transfer in van der Waals trilayer semiconductors. Nano Lett. 2017, 17, 1623–1628.

[44]

Raja, A.; Montoya-Castillo, A.; Zultak, J.; Zhang, X. X.; Ye, Z. L.; Roquelet, C.; Chenet, D. A.; van der Zande, A. M.; Huang, P. S. N.; Jockusch, S. et al. Energy transfer from quantum dots to graphene and MoS2: The role of absorption and screening in two-dimensional materials. Nano Lett. 2016, 16, 2328–2333.

[45]

McGraw, J. D.; Niguès, A.; Chennevière, A.; Siria, A. Contact dependence and velocity crossover in friction between microscopic solid/solid contacts. Nano Lett. 2017, 17, 6335–6339.

[46]

Zhang, X.; Sun, J. H.; Du, S. Y.; Li, H.; Qian, L. M. Electronic interpretation of interlayer energy landscape in layered materials. Adv. Funct. Mater. 2023, 33, 2301402.

Nano Research
Article number: 94907247
Cite this article:
Wang C, Han R, Wang Y, et al. Friction-induced ultrafast charge transfer in van der Waals heterostructures. Nano Research, 2025, 18(3): 94907247. https://doi.org/10.26599/NR.2025.94907247

460

Views

98

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 November 2024
Revised: 18 December 2024
Accepted: 08 January 2025
Published: 03 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return