AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Three-dimensional structured of V-doped CoP in situ grown on MXene as highly efficient bifunctional electrocatalyst for water splitting

Hong Wang1Huimin Jiang1,2Yongqi Niu1Nasir A. Siddiqui3Aslam Khan4Lu Pan1( )Jianjian Lin1( )
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
Show Author Information

Graphical Abstract

A novel three-dimensional (3D) structured V-doped CoP grown in situ on MXene by one-step hydrothermal and controlled phosphorylation (defined as V-CoP/MXene@NF) bifunctional catalyst was successfully synthesised by one-step hydrothermal and controlled phosphorylation methods. The catalyst exhibits excellent electrolytic water performance, which is attributed to the synergistic effect between metal element doping and MXene.

Abstract

A challenging but very important task is the development of efficient and cost effective non-noble metal based bifunctional electrocatalysts with excellent kinetics for overall water splitting. Improving the catalyst’s electronic structure, optimizing intermediate adsorption, and enhancing charge transfer kinetics are crucial for enhancing reaction efficiency. In this study, we prepared three-dimensional structured V-doped CoP grown in situ on MXene by one-step hydrothermal and controlled phosphorylation (defined as V-CoP/MXene@NF). The V doping not only optimises the electronic conductivity, but also creates a strong synergistic effect between the MXene and V-CoP components, enriching the active sites of the catalysts. The V-CoP/MXene@NF electrocatalyst can achieve a current density of 10 mA·cm−2 in 1.0 M KOH solution, with overpotentials of 78 and 223 mV for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. For overall water splitting, we used the catalyst as an anode and cathode assembly in an electrolytic cell, which could drive a current density of 10 mA·cm−2 with an overpotential of only 1.56 V and excellent durability. This work provides new ideas for designing novel MXene-based non-noble metal bifunctional electrocatalysts.

Electronic Supplementary Material

Download File(s)
7238_ESM.pdf (2.2 MB)

References

[1]

Liu, Y. J.; Yuan, Z. S.; Song, Q.; Xu, T. G.; He, G.; Sun, H. X.; Qiao, Q.; Guan, X. F.; Xu, T.; Dai, X. P. et al. Dual-defective-engineered RuO2/D-Co3O4/CC composite as efficient electrocatalysts for triggering oxygen evolution reaction in acidic media. Sci. China Mater. 2024, 67, 771–779.

[2]

Luo, Y. T.; Zhang, Z. Y.; Yang, F. N.; Li, J.; Liu, Z. B.; Ren, W. C.; Zhang, S.; Liu, B. L. Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 2021, 14, 4610–4619.

[3]

Ruqia, B.; Kanti Kabiraz, M.; Wook Hong, J.; Choi, S. I. Catalyst activation: Surface doping effects of group VI transition metal dichalcogenides towards hydrogen evolution reaction in acidic media. J. Energy Chem. 2022, 72, 217–240.

[4]

Li, J. Z.; Hou, C. Z.; Chen, C.; Ma, W. S.; Li, Q.; Hu, L. W.; Lv, X. W.; Dang, J. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting. ACS Nano 2023, 17, 10947–10957.

[5]

Lv, Z. P.; Ma, W. S.; Wang, M.; Dang, J.; Jian, K. L.; Liu, D.; Huang, D. J. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2T x )-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media. Adv. Funct. Mater. 2021, 31, 2102576.

[6]

Lin, Y. Z.; Zhu, W. J.; Li, Y. H. Hierarchical monolithic carbon with high transfer performance for hydrogen evolution reaction. J. Energy Chem. 2022, 73, 41–48.

[7]

Wang, M.; Yang, H.; Shi, J. N.; Chen, Y. F.; Zhou, Y.; Wang, L. G.; Di, S. J.; Zhao, X.; Zhong, J.; Cheng, T. et al. Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 5771–5777.

[8]

Niu, H. J.; Yan, Y.; Jiang, S. S.; Liu, T.; Sun, T.; Zhou, W.; Guo, L.; Li, J. H. Interfaces decrease the alkaline hydrogen-evolution kinetics energy barrier on NiCoP/Ti3C2T x MXene. ACS Nano 2022, 16, 11049–11058.

[9]

Xiao, Y.; Wang, Y. B.; Xiao, M. L.; Liu, C. P.; Hou, S.; Ge, J. J.; Xing, W. Regulating the pore structure and oxygen vacancies of cobaltosic oxide hollow dodecahedra for an enhanced oxygen evolution reaction. NPG Asia Mater. 2020, 12, 73.

[10]

Han, G. Q.; Li, X.; Zhao, X.; Dong, B.; Hu, W. H.; Liu, Y. R.; Shang, X.; Chai, Y. M.; Liu, C. G. Self-sacrificial template method to MnO2 microspheres as highly efficient electrocatalyst for oxygen evolution reaction. J. Solid State Electrochem. 2016, 20, 2907–2912.

[11]

Sun, L.; Xu, H. Z.; Cheng, Z. Y.; Zheng, D. H.; Zhou, Q. N.; Yang, S. K.; Lin, J. J. A heterostructured WS2/WSe2 catalyst by heterojunction engineering towards boosting hydrogen evolution reaction. Chem. Eng. J. 2022, 443, 136348.

[12]

Gao, C.; Pan, L.; Wang, H.; Guo, H.; Melhi, S.; Amin, M. A.; Lin, J. J. Cerium doping-induced enrichment of Ni3S4 phase for boosting oxygen evolution reaction. ChemSusChem 2024, 17, e202400056.

[13]

Sun, L.; Gao, M. Y.; Jing, Z. X.; Cheng, Z. Y.; Zheng, D. H.; Xu, H. Z.; Zhou, Q. N.; Lin, J. J. 1 T-phase enriched P doped WS2 nanosphere for highly efficient electrochemical hydrogen evolution reaction. Chem. Eng. J. 2022, 429, 132187.

[14]

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

[15]

Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 2019, 31, 1802880.

[16]

Lin, L. X.; Sherrell, P.; Liu, Y. Q.; Lei, W.; Zhang, S. W.; Zhang, H. J.; Wallace, G. G.; Chen, J. Engineered 2D transition metal dichalcogenides—A vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.

[17]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[18]

Kou, Z. K.; Wang, T. T.; Gu, Q. L.; Xiong, M.; Zheng, L. R.; Li, X.; Pan, Z. H.; Chen, H.; Verpoort, F.; Cheetham, A. K. et al. Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 2019, 9, 1803768.

[19]

Wu, T.; Zhang, S. N.; Bu, K. J.; Zhao, W.; Bi, Q. Y.; Lin, T. Q.; Huang, J.; Li, Y. S.; Huang, F. Q. Nickel nitride-black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 22063–22069.

[20]

Selvam, N. C. S.; Lee, J.; Choi, G. H.; Oh, M. J.; Xu, S. Y.; Lim, B.; Yoo, P. J. MXene Supported Co x A y (A = OH, P, Se) electrocatalysts for overall water splitting: Unveiling the role of anions in intrinsic activity and stability. J. Mater. Chem. A 2019, 7, 27383–27393.

[21]

Zhang, L. L.; Shi, X. X.; Xu, A. J.; Zhong, W. W.; Zhang, J. T.; Shen, S. J. Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution. Nano Res. 2024, 17, 3693–3699.

[22]

Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

[23]

Thiyagarajan, D.; Gao, M. Y.; Sun, L.; Dong, X. C.; Zheng, D. H.; Abdul Wahab, M.; Will, G.; Lin, J. J. Nanoarchitectured porous Cu-CoP nanoplates as electrocatalysts for efficient oxygen evolution reaction. Chem. Eng. J. 2022, 432, 134303.

[24]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

[25]

Zhang, R.; Wei, Z. H.; Ye, G. Y.; Chen, G. J.; Miao, J. J.; Zhou, X. H.; Zhu, X. W.; Cao, X. Q.; Sun, X. N. “d-electron complementation” induced V-Co phosphide for efficient overall water splitting. Adv. Energy Mater. 2021, 11, 2101758.

[26]

Zhang, R.; Tang, C.; Kong, R. M.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. P. Al-doped CoP nanoarray: A durable water-splitting electrocatalyst with superhigh activity. Nanoscale 2017, 9, 4793–4800.

[27]

Wu, C. F.; Chung, R. J.; Kongvarhodom, C.; Chen, H. M.; Husain, S.; Gong, J. W.; Tung, C. W.; Lin, L. Y. In-situ grown nickel iron bimetal organic frameworks from activated Ni foam for efficient energy storage and electrocatalysis: Study of metal ratio and nickel precursor effects. J. Power Sources 2024, 594, 233968.

[28]

Tao, Z. X. G.; Jiang, L. J.; Jia, X. T.; Xiao, H. X.; Liang, Y.; Yang, B. Y.; Guo, P.; Zhang, L.; Yang, H. H. In situ growth of Co3O4 nanoneedles on titanium mesh for electrocatalytic oxygen evolution. J. Mater. Sci.: Mater. Electron. 2021, 32, 23275–23284.

[29]

Zhang, C. F.; Anasori, B.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29, 1702678.

[30]

Xu, H. Z.; Zheng, D. H.; Liu, F. Q.; Li, W.; Lin, J. J. Synthesis of an MXene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 2020, 8, 5853–5858.

[31]

Peng, J. H.; Chen, X. Z.; Ong, W. J.; Zhao, X. J.; Li, N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem 2019, 5, 18–50.

[32]

Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494.

[33]

Ma, W. S.; Qiu, Z. M.; Li, J. Z.; Hu, L. W.; Li, Q.; Lv, X. W.; Dang, J. Interfacial electronic coupling of V-doped Co2P with high-entropy MXene reduces kinetic energy barrier for efficient overall water splitting. J. Energy Chem. 2023, 85, 301–309.

[34]

Jiang, J. B.; Sun, R.; Huang, X.; Xu, W. X.; Zhou, S. B.; Wei, Y.; Han, S.; Li, Y. L. In-situ derived Mo-doped NiCoP and MXene to form Mott–Schottky heterojunction with tunable surface electron density to promote overall water splitting. Compos. B: Eng. 2023, 263, 110834.

[35]

Gong, F. L.; Liu, M. M.; Ye, S.; Gong, L. H.; Zeng, G.; Xu, L.; Zhang, X. L.; Zhang, Y. H.; Zhou, L. M.; Fang, S. M. et al. All-pH stable sandwich-structured MoO2/MoS2/C hollow nanoreactors for enhanced electrochemical hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2101715.

[36]

Li, M. J.; Sun, R.; Li, Y. L.; Jiang, J. B.; Xu, W. X.; Cong, H. S.; Han, S. The 3D porous “celosia” heterogeneous interface engineering of layered double hydroxide and P-doped molybdenum oxide on MXene promotes overall water-splitting. Chem. Eng. J. 2022, 431, 133941.

[37]

Zhu, C. Y.; Pei, C. G.; Park, H. S.; Yu, X. Design of 2D/2D heterostructure by coupling cobalt hydroxides with MXene on nickel foam for high energy density supercapacitors. J. Alloys Compd. 2023, 948, 169809.

[38]

Xu, D. Y.; Kang, Z. M.; Zhao, H. B.; Ji, Y. M.; Yao, W. L.; Ye, D. X.; Zhang, J. J. Coupling heterostructured CoP-NiCoP nanopin arrays with MXene (Ti3C2T x ) as an efficient bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2023, 639, 223–232.

[39]

Li, L. L.; Yu, D. H.; Li, P.; Huang, H. J.; Xie, D. Y.; Lin, C. C.; Hu, F.; Chen, H. Y.; Peng, S. J. Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy Environ. Sci. 2021, 14, 6419–6427.

[40]

Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373–382.

[41]

Li, W. J.; Yang, Q. R.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources 2015, 294, 627–632.

[42]

Qin, J. F.; Lin, J. H.; Chen, T. S.; Liu, D. P.; Xie, J. Y.; Guo, B. Y.; Wang, L.; Chai, Y. M.; Dong, B. Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting. J. Energy Chem. 2019, 39, 182–187.

[43]

Kang, S. M.; Kim, M.; Lee, J. B.; Xu, S. Y.; Clament Sagaya Selvam, N.; Yoo, P. J. A NiCoP nanocluster-anchored porous Ti3C2T x monolayer as high performance hydrogen evolution reaction electrocatalysts. Nanoscale 2021, 13, 12854–12864.

[44]

Xue, H. Y.; Meng, A. L.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, 14, 4173–4181.

[45]

Lu, Y.; Fan, D. Q.; Chen, Z. P.; Xiao, W. P.; Cao, C. C.; Yang, X. F. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460–466.

[46]

Sari, F. N. I.; Chen, H. S.; Anbalagan, A. K.; Huang, Y. J.; Haw, S. C.; Chen, J. M.; Lee, C. H.; Su, Y. H.; Ting, J. M. V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction. Chem. Eng. J. 2022, 438, 135515.

[47]

Zhu, R. L.; Chen, F. F.; Wang, J. Y.; Song, Y. Y.; Cheng, J. L.; Mao, M.; Ma, H. J.; Lu, J. J.; Cheng, Y. L. Multi-channel V-doped CoP hollow nanofibers as high-performance hydrogen evolution reaction electrocatalysts. Nanoscale 2020, 12, 9144–9151.

[48]

Huang, Y.; Xu, G. Z.; Huang, X. Y.; Wu, H.; Wang, X. H. CoV2O6 coupled with MXenes as a highly efficient electrocatalyst for water splitting. J. Mater. Chem. C 2023, 11, 11960–11968.

[49]

Liu, P.; Chen, B.; Liang, C. W.; Yao, W. T.; Cui, Y. Z.; Hu, S. Y.; Zou, P. C.; Zhang, H.; Fan, H. J.; Yang, C. Tip-enhanced electric field: A new mechanism promoting mass transfer in oxygen evolution reactions. Adv. Mater. 2021, 33, 2007377.

[50]

Wang, L. Q.; Song, L.; Yang, Z. Y.; Chang, Y. M.; Hu, F.; Li, L.; Li, L. L.; Chen, H. Y.; Peng, S. J. Electronic modulation of metal-organic frameworks by interfacial bridging for efficient pH-universal hydrogen evolution. Adv. Funct. Mater. 2022, 33, 2210322.

[51]

Yang, L.; Liu, R. M.; Jiao, L. F. Electronic redistribution: Construction and modulation of interface engineering on CoP for enhancing overall water splitting. Adv. Funct. Mater. 2020, 30, 1909618.

Nano Research
Article number: 94907238
Cite this article:
Wang H, Jiang H, Niu Y, et al. Three-dimensional structured of V-doped CoP in situ grown on MXene as highly efficient bifunctional electrocatalyst for water splitting. Nano Research, 2025, 18(3): 94907238. https://doi.org/10.26599/NR.2025.94907238
Topics:

532

Views

134

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 October 2024
Revised: 27 December 2024
Accepted: 06 January 2025
Published: 24 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return