AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synthesis, electronic property, and negative thermal expansion in cubic CaTiF6

Kaiyue ZhaoPeixian ZhangYixin JiaoFei WangJuan GuoYongqiang Qiao ( )Qiang SunQilong Gao ( )
Key Laboratory of Materials Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Show Author Information

Graphical Abstract

A facile low temperature synthesis strategy was proposed to prepare the cubic phase CaTiF6 and the negative thermal expansion (NTE) mechanism was investigated based on the entire Brillouin region.

Abstract

Double ReO3-type fluorides exhibit greater structural flexibility and elemental tunability than their single ReO3-type counterparts, drawing widespread interest in applications involving negative thermal expansion (NTE) and optics. However, their applications are extremely constrained by the scarcity of the materials themselves, the harsh preparation conditions, and the high cost of the requisite raw materials. In this work, we have successfully obtained the cubic phase CaTiF6 more facilely with inexpensive CaCl2 and H2TiF6. The ultraviolet–visible (UV–vis) absorption spectrum indicates a bandgap of 3.6 eV and semiconducting properties. Raman spectroscopy analysis reveals the structure from rhombic to cubic transformation around 138 K, accompanied by a significant isotropic NTE in the cubic phase, with a coefficient of αl = −7.26 × 10−6 K−1 (175–475 K). Theoretical calculations based on first principles indicate that the semiconducting properties originate from the hybridization of the 3d orbit of Ti and the 2p orbit of F. The driving force for NTE in CaTiF6 comes from the transverse thermal vibrations of fluorine atoms, as confirmed by density functional theory (DFT) calculation. This research provides a novel, facile, and cost-effective synthetic way and reveals in depth the electronic properties and NTE mechanism of CaTiF6, which dramatically promotes the development of Ti-based fluorides.

References

[1]

Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleight, A. W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996, 272, 90–92.

[2]

Mohn, P. A century of zero expansion. Nature 1999, 400, 18–19.

[3]

Pan, Z.; Chen, J.; Jiang, X. X.; Hu, L.; Yu, R. Z.; Yamamoto, H.; Ogata, T.; Hattori, Y.; Guo, F. M.; Fan, X. A. et al. Colossal volume contraction in strong polar perovskites of Pb(Ti,V)O3. J. Am. Chem. Soc. 2017, 139, 14865–14868.

[4]

Zhang, Y.; Chen, B.; Guan, D. Q.; Xu, M. G.; Ran, R.; Ni, M.; Zhou, W.; O'Hayre, R.; Shao, Z. P. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251.

[5]

Dove, M. T.; Fang, H. Negative thermal expansion and associated anomalous physical properties: Review of the lattice dynamics theoretical foundation. Rep. Prog. Phys. 2016, 79, 066503.

[6]

Yu, C. Y.; Lin, K.; Jiang, S. H.; Cao, Y. L.; Li, W. J.; Wang, Y. L.; Chen, Y.; An, K.; You, L.; Kato, K. et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite. Nat. Commun. 2021, 12, 4701.

[7]

Shi, N. K.; Sanson, A.; Gao, Q. L.; Sun, Q.; Ren, Y.; Huang, Q. Z.; De Souza, D. O.; Xing, X. R.; Chen, J. Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7. J. Am. Chem. Soc. 2020, 142, 3088–3093.

[8]

Wei, W.; Gao, Q. L.; Guo, J.; Chao, M. J.; He, L. H.; Chen, J.; Liang, E. J. Realizing isotropic negative thermal expansion covering room temperature by breaking the superstructure of ZrV2O7. Appl. Phys. Lett. 2020, 116, 181902.

[9]

Zhen, X.; Sanson, A.; Sun, Q.; Liang, E. J.; Gao, Q. L. Role of alkali ions in the near-zero thermal expansion of NaSICON-type AZr2(PO4)3 (A = Na, K, Rb, Cs) and Zr2(PO4)3 compounds. Phys. Rev. B 2023, 108, 144102.

[10]

Qiao, Y. Q.; Zhang, S.; Zhang, P. X.; Guo, J.; Sanson, A.; Zhen, X. Zhao, K. Y.; Gao, Q. L.; Chen, J. Simple chemical synthesis and isotropic negative thermal expansion in MHfF6 (M = Ca, Mn, Fe, and Co). Nano Res. 2024, 17, 2195–2203.

[11]

Zhao, K. Y.; Jiao, Y. X.; Sun, Q.; He, R.; Sanson, A.; Zhong, Z. C.; Liang, E. J.; Gao, Q. L. Octahedral tilt distortion in negative thermal expansion in the fluorides CaZrF6 and ScF3. Phys. Rev. B 2024, 110, 064322.

[12]

Zhang, P. X.; Qiao, Y. Q.; Zhao, K. Y.; Wang, Q. J.; Zhao, H.; Guo, J.; Liang, E. J.; Sun, T.; Zhang, J. W.; Gao, Q. L. Synthesis, structure, and thermal expansion in CaZrF6 with two polymorphs. Nano Res. 2024, 17, 8618–8626.

[13]

Gao, Q. L.; Sun, Q.; Venier, A.; Sanson, A.; Huang, Q. Z.; Jia, Y.; Liang, E. J.; Chen, J. The role of average atomic volume in predicting negative thermal expansion: The case of REFe(CN)6. Sci. China Mater. 2022, 65, 553–557.

[14]

Gao, Q. L.; Jiao, Y. X.; Sun, Q.; Sprenger, J. A. P.; Finze, M.; Sanson, A.; Liang, E. J.; Xing, X. R.; Chen, J. Giant negative thermal expansion in ultralight NaB(CN)4. Angew. Chem., Int. Ed. 2024, 63, e202401302.

[15]

Song, Y. Z.; Chen, J.; Liu, X. Z.; Wang, C.; Zhang, J.; Liu, H.; Zhu, H.; Hu, L.; Lin, K.; Zhang, S. T. et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds. J. Am. Chem. Soc. 2018, 140, 602–605.

[16]

Qiao, Y. Q.; Song, Y. Z.; Sanson, A.; Fan, L. L.; Sun, Q.; Hu, S. X.; He, L. H.; Zhang, H. J.; Xing, X. R.; Chen, J. Negative thermal expansion in YbMn2Ge2 induced by the dual effect of magnetism and valence transition. npj Quantum Mater. 2021, 6, 49.

[17]

Qiao, Y. Q.; Liaquat, I.; Zhu, Y. H.; Guo, J.; Liang, E. J.; Gao, Q. L. Tunable thermal expansion via the magnetic phase competition in kagome magnets. Appl. Phys. Lett. 2024, 125, 032403.

[18]

Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. Pronounced negative thermal expansion from a simple structure: Cubic ScF3. J. Am. Chem. Soc. 2010, 132, 15496–15498.

[19]

Hu, L.; Chen, J.; Sanson, A.; Wu, H.; Guglieri Rodriguez, C.; Olivi, L.; Ren, Y.; Fan, L. L.; Deng, J. X.; Xing, X. R. New insights into the negative thermal expansion: Direct experimental evidence for the “guitar-string” effect in cubic ScF3. J. Am. Chem. Soc. 2016, 138, 8320–8323.

[20]

Li, C. W.; Tang, X. L.; Muñoz, J. A.; Keith, J. B.; Tracy, S. J.; Abernathy, D. L.; Fultz, B. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys. Rev. Lett. 2011, 107, 195504.

[21]

Kennedy, B. J.; Vogt, T. Powder X-ray diffraction study of the rhombohedral to cubic phase transition in TiF3. Mater. Res. Bull. 2002, 37, 77–83.

[22]

Daniel, P.; Bulou, A.; Rousseau, M.; Nouet, J. Structural phase transitions and lattice dynamics in the trifluorides MF3 (M = Al, Cr, Ga, V, Fe, In…). Phase Transit. 1991, 33, 91–97.

[23]
Morelock, C. R. Thermal expansion, compressibility, and local structure of fluorides and oxyfluorides with the rhenium trioxide structure. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA, 2014.
[24]

Hu, L.; Chen, J.; Xu, J. L.; Wang, N.; Han, F.; Ren, Y.; Pan, Z.; Rong, Y. C.; Huang, R. J.; Deng, J. X. et al. Atomic linkage flexibility tuned isotropic negative, zero, and positive thermal expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). J. Am. Chem. Soc. 2016, 138, 14530–14533.

[25]

Gupta, M. K.; Singh, B.; Mittal, R.; Chaplot, S. L. Negative thermal expansion behavior in MZrF6 (M = Ca, Mg, Sr): Ab initio lattice dynamical studies. Phys. Rev. B 2018, 98, 014301.

[26]

Hancock, J. C.; Chapman, K. W.; Halder, G. J.; Morelock, C. R.; Kaplan, B. S.; Gallington, L. C.; Bongiorno, A.; Han, C.; Zhou, S.; Wilkinson, A. P. Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-type AIIBIVF6:CaZrF6 and CaHfF6. Chem. Mater. 2015, 27, 3912–3918.

[27]

Hester, B. R.; Wilkinson, A. P. Negative thermal expansion, response to pressure and phase transitions in CaTiF6. Inorg. Chem. 2018, 57, 11275–11281.

[28]

Legein, C.; Body, M.; Lhoste, J.; Li, W.; Charpentier, T.; Dambournet, D. Synthesis, crystal structure and 19F NMR parameters modelling of CaTiF6(H2O)2 yielding to a revision of the bond-valence parameters for the Ti4+/F ion pair. J. Solid State Chem. 2023, 319, 123793.

[29]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

[30]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[31]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[32]

Gao, Q. L.; Zhang, S.; Jiao, Y. X.; Qiao, Y. Q.; Sanson, A.; Sun, Q.; Shi, X. W.; Liang, E. J.; Chen, J. A new isotropic negative thermal expansion material of CaSnF6 with facile and low-cost synthesis. Nano Res. 2023, 16, 5964–5972.

[33]

Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.

[34]

Lane, N. J.; Vogel, S. C.; Hug, G.; Togo, A.; Chaput, L.; Hultman, L.; Barsoum, M. W. Neutron diffraction measurements and first-principles study of thermal motion of atoms in select Mn n +1AX n and binary MX transition-metal carbide phases. Phys. Rev. B 2012, 86, 214301.

[35]

Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 1966, 15, 627–637.

[36]
Levinshtein, M. E.; Rumyantsev, S. L.; Shur, M. S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; Wiley: New York, 2001.
[37]

Yang, C.; Qu, B. Y.; Pan, S. S.; Zhang, L.; Zhang, R. R.; Tong, P.; Xiao, R. C.; Lin, J. C.; Guo, X. G.; Zhang, K. et al. Large positive thermal expansion and small band gap in double-ReO3-type compound NaSbF6. Inorg. Chem. 2017, 56, 4990–4995.

[38]

Hu, L.; Chen, J.; Fan, L. L.; Ren, Y.; Huang, Q. Z.; Sanson, A.; Jiang, Z.; Zhou, M.; Rong, Y. C.; Wang, Y. et al. High-curie-temperature ferromagnetism in (Sc,Fe)F3 fluorides and its dependence on chemical valence. Adv. Mater. 2015, 27, 4592–4596.

[39]

Sanson, A.; Giarola, M.; Mariotto, G.; Hu, L.; Chen, J.; Xing, X. R. Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations. Mater. Chem. Phys. 2016, 180, 213–218.

[40]

Wang, L.; Chen, Y.; Ni, J.; Ye, F.; Wang, C. Anharmonic interaction in negative thermal expansion material CaTiF6. Inorg. Chem. 2022, 61, 17378–17386.

[41]

Wang, N.; Deng, J. X.; Chen, J.; Xing, X. R. Phonon spectrum attributes for the negative thermal expansion of MZrF6 (M = Ca, Mn-Ni, Zn). Inorg. Chem. Front. 2019, 6, 1022–1028.

[42]

Cong, X.; Li, Q. Q.; Zhang, X.; Lin, M. L.; Wu, J. B.; Liu, X. L.; Venezuela, P.; Tan, P. H. Probing the acoustic phonon dispersion and sound velocity of graphene by Raman spectroscopy. Carbon 2019, 149, 19–24.

Nano Research
Article number: 94907236
Cite this article:
Zhao K, Zhang P, Jiao Y, et al. Synthesis, electronic property, and negative thermal expansion in cubic CaTiF6. Nano Research, 2025, 18(3): 94907236. https://doi.org/10.26599/NR.2025.94907236

452

Views

155

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 October 2024
Revised: 09 December 2024
Accepted: 06 January 2025
Published: 21 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return