AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (21.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Highly efficient layered Ir sub-nanoclusters for antibacterial application

Lini Yang1( )Pengbo Zhu1,2Tao Li1Yueyue Jiao3,4Xiangbin Cai5Jialan Liang1Hexin Zhang1Ning Wang5Xiaowen Chen6 ( )Hongyang Liu6 ( )
Department of Chemistry, Liaoning University, 66 Congshan Road, Shenyang 110036, China
Liaoning Dandong Ecological Environment Monitoring Center, Dandong 11800, China
State Key Laboratory of Coal Conversion, Institute Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
National Energy Center for Coal to Clean Fuel, Synfuels China Co., Ltd, Beijing 100871, China
Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Show Author Information

Graphical Abstract

We fabricated layered Ir-centered nanozymes with desired peroxidase-like activity and antibacterial performance. Compared with atomically dispersed Ir on nanodiamond@graphene (Ir1/ND@G) single-atom nanozyme (SAzyme) and Ir-NPs/ND@G nanozyme, the Irn/ND@G nanozyme can effectively catalyze the conversion of H2O2 to hydroxyl radicals, resulting in robust antibacterial abilities.

Abstract

Atomically dispersed nanozymes have garnered immense attention within the biomedical field, while precisely designing these nanozymes and elucidating their intricate structure-performance relationships of their structures and antibacterial performance remain the formidable challenges. Herein, we fabricated defect-rich graphene supported layered Ir cluster nanozymes for antibacterial applications. Steady-state kinetic experiments revealed that the layered Ir clusters exhibited the higher catalytic efficiency of 1.16 mM−1·s−1 with 3,3',5,5'-tetramethylbenzidine (TMB) and 0.18 mM−1·s−1 with H2O2, compared to Ir nanoparticle (0.55 and 0.1 mM−1·s−1) and the atomically dispersed Ir single-atom nanozyme (SAzyme) (0.3 and 0.039 mM−1·s−1) and other previously reported single-atom nanozymes. Moreover, both experimental results and density functional theory studies disclosed that the layered Ir clusters exhibited the enhanced ability to facilitate the conversion of hydrogen peroxide into hydroxyl free radicals, signifying the higher catalytic efficiency than that on Ir nanoparticles and Ir single-atoms. Notably, the Ir cluster nanozyme with robust peroxidase-like activity had 100% antimicrobial rate against E. coli and S. aureus, underscoring its potential applications in antibacterial fields.

Electronic Supplementary Material

Download File(s)
7234_ESM.pdf (2.4 MB)

References

[1]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 2577–2583.

[2]

Jiao, L.; Ye, W.; Kang, Y. K.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Gu, W. L.; Song, W. Y.; Xiong, Y. J.; Zhu, C. Z. Atomically dispersed N-coordinated Fe–Fe dual-sites with enhanced enzyme-like activities. Nano Res. 2022, 15, 959–964.

[3]

Huang, W. K.; Zhang, Z. Y.; Chen, J. Q.; Lin, J. X.; Wang, Y. Q.; Yan, X. C.; Zhang, W. Q.; Ning, S. P.; You, Q. Coordination engineering of FeCo dual single-atom nanozymes with photothermal-enhanced cascaded catalysis for efficient pancreatic cancer immunotherapy. Chem. Eng. J. 2024, 496, 154203.

[4]

Li, Z. H.; Zhou, M. Y.; Zhao, L. Z.; Hu, W.; Wang, X.; Wei, H.; Tong, X. X.; Yao, C. Q.; Li, X. Q.; Zhang, Y. T. et al. Copper-doped carbon dots nanozymes for multi-signal specific hydrogen sulfide assay and broad-spectrum antibacterial. Chem. Eng. J. 2024, 498, 155081.

[5]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[6]

Wu, R. F.; Sun, M. R.; Liu, X. L.; Qin, F. J.; Zhang, X. Y.; Qian, Z. N.; Huang, J.; Li, Y. J.; Tan, T.; Chen, W. X. et al. Oxidase-like ZnCoFe three-atom nanozyme as a colorimetric platform for ascorbic acid sensing. Anal. Chem. 2022, 94, 14308–14316.

[7]

Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Qi Lim, W.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.

[8]

Lin, L. H.; Li, H.; Gu, H. F.; Sun, Z. Y.; Huang, J.; Qian, Z. N.; Li, H.; Liu, J. Z.; Xi, H. Y.; Wu, P. F. et al. Asymmetrically coordinated single-atom iron nanozymes with Fe–N1C2 structure: A peroxidase mimetic for melatonin detection. Nano Res. 2023, 16, 4751–4757.

[9]

Wu, J. B.; Zhu, X. Y.; Li, Q.; Fu, Q.; Wang, B. X.; Li, B. B.; Wang, S. S.; Chang, Q. C.; Xiang, H. D.; Ye, C. L. et al. Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat. Commun. 2024, 15, 6174.

[10]

Lyu, M.; Luo, M.; Li, J. Y.; Akakuru, O. U.; Fan, X. W.; Cao, Z.; Fan, K. L.; Jiang, W. Personalized carbon monoxide-loaded biomimetic single-atom nanozyme for ferroptosis-enhanced FLASH radioimmunotherapy. Adv. Funct. Mater. 2023, 33, 2306930.

[11]

Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.

[12]

Sheng, R.; Liu, Y.; Cai, T. M.; Wang, R.; Yang, G.; Wen, T.; Ning, F. J.; Peng, H. L. Ultrafine FeCuAgCeGd-based high-entropy nanozyme: Preparation, catalytic mechanism, and point-of-care detection of dopamine in human serum. Chem. Eng. J. 2024, 485, 149913.

[13]

Jiang, B.; Guo, Z. J.; Liang, M. M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889.

[14]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[15]

Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

[16]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[17]

Wang, D.; Yuan, F.; Deng, X. L.; Liu, Q. D.; Shi, W. X.; Wang, X. Sub-nanosheet induced inverse growth of negative valency Au clusters for tumor treatment by enhanced oxidative stress. Angew. Chem., Int. Ed. 2024, 63, e202410649.

[18]

Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A. L.; Zhang, J.; Huang, Z. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A Bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, 2107088.

[19]

Peng, C.; Pang, R. Y.; Li, J.; Wang, E. K. Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater. 2023, 36, 2211724.

[20]

Liu, L.; Zhang, S. F.; Li, G.; Zhe, Y. D.; Liu, J. M.; Zhang, X. X.; Wei, J. H.; Sun, X.; Li, Y. H.; Zhang, X. D. D-band center coordination modulated enzyme-like activity in Fe–Cu dual-metal single-atom nanozymes. Nano Res. 2024, 17, 5872–5883.

[21]

Cai, S. F.; Zhang, W.; Yang, R. Emerging single-atom nanozymes for catalytic biomedical uses. Nano Res. 2023, 16, 13056–13076.

[22]

Liu, Q. D.; Zhang, Q. H.; Shi, W. X.; Hu, H. S.; Zhuang, J.; Wang, X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 2022, 14, 433–440.

[23]

Zhang, S. M.; Wang, X. Sub-1 nm: A critical feature size in materials science. Acc. Mater. Res. 2022, 3, 1285–1298.

[24]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[25]

Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.

[26]

Chen, X. W.; Peng, M.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed metal clusters: Fabrication and application in alkane dehydrogenation. ACS Catal. 2022, 12, 12720–12743.

[27]

Meng, F. C.; Peng, M.; Chen, Y. L.; Cai, X. B.; Huang, F.; Yang, L. N.; Liu, X.; Li, T.; Wen, X. D.; Wang, N. et al. Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Appl. Catal. B: Environ. 2022, 301, 120826.

[28]

Meng, F. C.; Zhu, P. B.; Yang, L. N.; Xia, L. X.; Liu, H. Y. Nanozymes with atomically dispersed metal centers: Structure–activity relationships and biomedical applications. Chem. Eng. J. 2023, 452, 139411.

[29]

Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2020, 7, 262–273.

Nano Research
Article number: 94907234
Cite this article:
Yang L, Zhu P, Li T, et al. Highly efficient layered Ir sub-nanoclusters for antibacterial application. Nano Research, 2025, 18(3): 94907234. https://doi.org/10.26599/NR.2025.94907234

628

Views

106

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 10 October 2024
Revised: 07 December 2024
Accepted: 03 January 2025
Published: 19 February 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return