Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Atomically dispersed nanozymes have garnered immense attention within the biomedical field, while precisely designing these nanozymes and elucidating their intricate structure-performance relationships of their structures and antibacterial performance remain the formidable challenges. Herein, we fabricated defect-rich graphene supported layered Ir cluster nanozymes for antibacterial applications. Steady-state kinetic experiments revealed that the layered Ir clusters exhibited the higher catalytic efficiency of 1.16 mM−1·s−1 with 3,3',5,5'-tetramethylbenzidine (TMB) and 0.18 mM−1·s−1 with H2O2, compared to Ir nanoparticle (0.55 and 0.1 mM−1·s−1) and the atomically dispersed Ir single-atom nanozyme (SAzyme) (0.3 and 0.039 mM−1·s−1) and other previously reported single-atom nanozymes. Moreover, both experimental results and density functional theory studies disclosed that the layered Ir clusters exhibited the enhanced ability to facilitate the conversion of hydrogen peroxide into hydroxyl free radicals, signifying the higher catalytic efficiency than that on Ir nanoparticles and Ir single-atoms. Notably, the Ir cluster nanozyme with robust peroxidase-like activity had 100% antimicrobial rate against E. coli and S. aureus, underscoring its potential applications in antibacterial fields.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 2577–2583.
Jiao, L.; Ye, W.; Kang, Y. K.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Gu, W. L.; Song, W. Y.; Xiong, Y. J.; Zhu, C. Z. Atomically dispersed N-coordinated Fe–Fe dual-sites with enhanced enzyme-like activities. Nano Res. 2022, 15, 959–964.
Huang, W. K.; Zhang, Z. Y.; Chen, J. Q.; Lin, J. X.; Wang, Y. Q.; Yan, X. C.; Zhang, W. Q.; Ning, S. P.; You, Q. Coordination engineering of FeCo dual single-atom nanozymes with photothermal-enhanced cascaded catalysis for efficient pancreatic cancer immunotherapy. Chem. Eng. J. 2024, 496, 154203.
Li, Z. H.; Zhou, M. Y.; Zhao, L. Z.; Hu, W.; Wang, X.; Wei, H.; Tong, X. X.; Yao, C. Q.; Li, X. Q.; Zhang, Y. T. et al. Copper-doped carbon dots nanozymes for multi-signal specific hydrogen sulfide assay and broad-spectrum antibacterial. Chem. Eng. J. 2024, 498, 155081.
Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.
Wu, R. F.; Sun, M. R.; Liu, X. L.; Qin, F. J.; Zhang, X. Y.; Qian, Z. N.; Huang, J.; Li, Y. J.; Tan, T.; Chen, W. X. et al. Oxidase-like ZnCoFe three-atom nanozyme as a colorimetric platform for ascorbic acid sensing. Anal. Chem. 2022, 94, 14308–14316.
Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Qi Lim, W.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.
Lin, L. H.; Li, H.; Gu, H. F.; Sun, Z. Y.; Huang, J.; Qian, Z. N.; Li, H.; Liu, J. Z.; Xi, H. Y.; Wu, P. F. et al. Asymmetrically coordinated single-atom iron nanozymes with Fe–N1C2 structure: A peroxidase mimetic for melatonin detection. Nano Res. 2023, 16, 4751–4757.
Wu, J. B.; Zhu, X. Y.; Li, Q.; Fu, Q.; Wang, B. X.; Li, B. B.; Wang, S. S.; Chang, Q. C.; Xiang, H. D.; Ye, C. L. et al. Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat. Commun. 2024, 15, 6174.
Lyu, M.; Luo, M.; Li, J. Y.; Akakuru, O. U.; Fan, X. W.; Cao, Z.; Fan, K. L.; Jiang, W. Personalized carbon monoxide-loaded biomimetic single-atom nanozyme for ferroptosis-enhanced FLASH radioimmunotherapy. Adv. Funct. Mater. 2023, 33, 2306930.
Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.
Sheng, R.; Liu, Y.; Cai, T. M.; Wang, R.; Yang, G.; Wen, T.; Ning, F. J.; Peng, H. L. Ultrafine FeCuAgCeGd-based high-entropy nanozyme: Preparation, catalytic mechanism, and point-of-care detection of dopamine in human serum. Chem. Eng. J. 2024, 485, 149913.
Jiang, B.; Guo, Z. J.; Liang, M. M. Recent progress in single-atom nanozymes research. Nano Res. 2023, 16, 1878–1889.
Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.
Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.
Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.
Wang, D.; Yuan, F.; Deng, X. L.; Liu, Q. D.; Shi, W. X.; Wang, X. Sub-nanosheet induced inverse growth of negative valency Au clusters for tumor treatment by enhanced oxidative stress. Angew. Chem., Int. Ed. 2024, 63, e202410649.
Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A. L.; Zhang, J.; Huang, Z. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A Bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, 2107088.
Peng, C.; Pang, R. Y.; Li, J.; Wang, E. K. Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater. 2023, 36, 2211724.
Liu, L.; Zhang, S. F.; Li, G.; Zhe, Y. D.; Liu, J. M.; Zhang, X. X.; Wei, J. H.; Sun, X.; Li, Y. H.; Zhang, X. D. D-band center coordination modulated enzyme-like activity in Fe–Cu dual-metal single-atom nanozymes. Nano Res. 2024, 17, 5872–5883.
Cai, S. F.; Zhang, W.; Yang, R. Emerging single-atom nanozymes for catalytic biomedical uses. Nano Res. 2023, 16, 13056–13076.
Liu, Q. D.; Zhang, Q. H.; Shi, W. X.; Hu, H. S.; Zhuang, J.; Wang, X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 2022, 14, 433–440.
Zhang, S. M.; Wang, X. Sub-1 nm: A critical feature size in materials science. Acc. Mater. Res. 2022, 3, 1285–1298.
Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.
Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.
Chen, X. W.; Peng, M.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed metal clusters: Fabrication and application in alkane dehydrogenation. ACS Catal. 2022, 12, 12720–12743.
Meng, F. C.; Peng, M.; Chen, Y. L.; Cai, X. B.; Huang, F.; Yang, L. N.; Liu, X.; Li, T.; Wen, X. D.; Wang, N. et al. Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Appl. Catal. B: Environ. 2022, 301, 120826.
Meng, F. C.; Zhu, P. B.; Yang, L. N.; Xia, L. X.; Liu, H. Y. Nanozymes with atomically dispersed metal centers: Structure–activity relationships and biomedical applications. Chem. Eng. J. 2023, 452, 139411.
Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2020, 7, 262–273.
628
Views
106
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).