Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As the widely studied two-dimensional materials, MXenes are potential candidates for various nonlinear optical modulators due to their excellent properties, such as the ultrafast carrier dynamics, high optical damage threshold, tunable bandgap, and exceptional photothermal conversion efficiency. This review summarizes the synthesis, material transfer, nonlinear optical properties, and applications of MXenes in nonlinear optical fields. Initially, the preparation methods of MXenes are introduced, including chemical etching method, chemical vapor deposition method, and the latest direct synthesis method. Subsequently, we discuss the integration of MXene-based nonlinear optical modulators, highlighting material transfer methods applicable to both fiber-optic and free-space optical systems. Subsequently, we focus on the nonlinear optical properties of Ti3C2Tx nanosheets, detailing the Z-scan technique used to analyze their nonlinear saturable absorption characteristics and nonlinear refractive index over the wavelength range of 800 to 2000 nm. Based on their outstanding optical nonlinearity, this paper summarizes and discusses the performance of ultrashort pulse lasers based on different MXenes. It also examines free-space optical switches utilizing spatial self-phase modulation (SSPM) and the all-optical modulation output performance of MXenes in fiber optics. In conclusion, the summary and prospect of MXene-based nonlinear optical modulator are presented.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.
Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.
Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.
Huo, N. J.; Yang, Y. J.; Li, J. B. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond. 2017, 38, 031002.
Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; Da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.
Chen, P. F.; Li, N.; Chen, X. Z.; Ong, W. J.; Zhao, X. J. et al. The rising star of 2D black phosphorus beyond graphene: Synthesis, properties and electronic applications. 2D Mater. 2017, 5, 014002.
Wang, S. W.; Pang, R.; Tan, T.; Wu, H. Y.; Wang, Q.; Li, C. Y.; Zhang, S.; Tan, T. X.; You, H. P.; Zhang, H. J. Achieving high quantum efficiency broadband NIR Mg4Ta2O9:Cr3+ phosphor through lithium-ion compensation. Adv. Mater. 2023, 35, 2300124.
Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.
Xu, H.; Ding, B. F.; Xu, Y. A.; Huang, Z. Y.; Wei, D. H.; Chen, S. H.; Lan, T. S.; Pan, Y. K.; Cheng, H. M.; Liu, B. L. Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride. Nat. Nanotechnol. 2022, 17, 1091–1096.
Tao, W.; Ji, X. Y.; Xu, X. D.; Islam, M. A.; Li, Z. J.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z. L. et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem., Int. Ed. 2017, 56, 11896–11900.
Dhakal, C.; Aryal, S.; Sakidja, R.; Ching, W. Y. Approximate lattice thermal conductivity of MAX phases at high temperature. J. Eur. Ceram. Soc. 2015, 35, 3203–3212.
Hazan, A.; Ratzker, B.; Zhang, D. Z.; Katiyi, A.; Sokol, M.; Gogotsi, Y.; Karabchevsky, A. MXene-nanoflakes-enabled all-optical nonlinear activation function for on-chip photonic deep neural networks. Adv. Mater. 2023, 35, 2210216.
Wang, Y. D.; Wang, Y. W.; Lan, C. Y.; Zhou, L.; Kang, J. L.; Zheng, W. X.; Xue, T. Y.; Li, Y. J.; Yuan, X. M.; Xiao, S. et al. Interfacial charge transfer for enhancing nonlinear saturable absorption in WS2/graphene heterostructure. Adv. Sci. 2024, 11, 2306096.
Wang, Y. D.; Wang, Y. W.; Dong, Y. L.; Zhou, L.; Kang, J. L.; Wang, N.; Li, Y. J.; Yuan, X. M.; Zhang, Z. W.; Huang, H. et al. 2D Nb2CT x MXene/MoS2 heterostructure construction for nonlinear optical absorption modulation. Opto-Electron. Adv. 2023, 6, 220162.
Wang, Y. D.; Wang,Y. W.; Chen, K. Q.; Qi, K.; Xue, T. Y.; Zhang, H.; Jun He, J.; Xiao, S. Niobium carbide MXenes with broad-band nonlinear optical response and ultrafast carrier dynamics. ACS Nano 2020, 14, 10492–10502.
Wang, Y. D.; Wang, G.; Wang, Y. W.; Zhou, L.; Kang, J. L.; Zheng, W. X.; Xiao, S.; Xing, G. C.; He, J. Two-dimensional molybdenum boride (MBene) Mo4/3B2T x with broadband and termination-dependent ultrafast nonlinear optical response. J. Phys. Chem. Lett. 2024, 15, 3461–3469.
Wheeler, D. A.; Zhang, J. Z. Exciton dynamics in semiconductor nanocrystals. Adv. Mater. 2013, 25, 2878–2896.
Zhao, X. L.; Jin, H.; Liu, J. Y.; Chao, J. L.; Liu, T. Y.; Zhang, H.; Wang, G.; Lyu, W.; Wageh, S.; Al-hartomy, O. A. et al. Integration and applications of nanomaterials for ultrafast photonics. Laser Photonics Rev. 2022, 16, 2270056.
Li, Z. Q.; Zhang, Y. X.; Cheng, C.; Yu, H. H.; Chen, F. et al. 6.5 GHz Q-switched mode-locked waveguide lasers based on two-dimensional materials as saturable absorbers. Opt. Express 2018, 26, 11321–11330.
Zhang, K.; Feng, M.; Ren, Y. Y.; Liu, F.; Chen, X. S.; Yang, J.; Yan, X. Q.; Song, F.; Tian, J. G. et al. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photonics Res. 2018, 6, 893–899.
Wu, K.; Zhang, X. Y.; Wang, J.; Li, X.; Chen, J. P. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Opt. Express 2015, 23, 11453–11461.
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.
Li, C.; Kota, S.; Hu, C.; Barsoum, M. W. On the synthesis of low-cost, titanium-based MXenes. J. Ceram. Sci. Technol. 2016, 7, 301–306.
Mariano, M.; Mashtalir, O.; Antonio, F.; Ryu, W. H.; Deng, B. C.; Xia, F. N.; Gogotsi, Y., Taylor, A. D. Titanum carbide MXene flakes as novel 2D metallic solution-processed films. ECS Trans. 2016, 75, 37.
Wyatt, B. C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable mechanical and tribological properties. Adv. Mater. 2021, 33, 2007973.
Zhang, H. J.; Yang, G.; Zuo, X. Q.; Tang, H. B.; Yang, Q.; Li, G. Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. J. Mater. Chem. A 2016, 4, 12913–12920.
Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.
Seredych, M.; Shuck, C. E.; Pinto, D.; Alhabeb, M.; Precetti, E.; Deysher, G.; Anasori, B.; Kurra, N.; Gogotsi, Y. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 2019, 31, 3324–3332.
Liu, X. Y.; Chen, C. S. MXene enhanced the photocatalytic activity of ZnO nanorods under visible light. Mater. Lett. 2020, 261, 127127.
Yin, L. J.; Li, Y. T.; Yao, X. C.; Wang, Y. Z.; Jia, L.; Liu, Q. M.; Li, J. S.; Li, Y. L.; He, D. Y. MXenes for solar cells. Nano-Micro Lett. 2021, 13, 78.
Jin, P.; Zhou, E. Z.; Cheng, L. L.; Zheng, W. L.; Zhao, Y.; Zhai, S.; Zhang, Y. N. In situ label-free monitoring of riboflavin concentration in shewanella via a fiber-optic biosensor modified by Ti3C2-MXene@SGNps composites. Adv. Opt. Mater. 2024, 12, 2470105.
Huang, K.; Li, Z. J.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124.
Wang, X. H.; Mathis, T. S.; Li, K.; Lin, Z. F.; Vlcek, L.; Torita, T.; Osti, N. C.; Hatter, C.; Urbankowski, P.; Sarycheva, A. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 2019, 4, 241–248.
Lee, C.; Oh, E. T.; Park, T. G.; Lee, S.; Kim, S. J.; Choi, Y. S.; Rotermund, F.; Yoon, D. K. et al. Terahertz-polarizing effect based on geometric anisotropy of Ti3C2T x MXene nanosheets. Carbon 2024, 225, 119156.
Yu, J. C.; Chen, Z. J.; Li, T.; Feng, T. L.; Huang, J. C.; Liu, Y. Z.; Ni, Z.; Yu, L.; Qiao, W. C. Nonlinear optical modulation characteristics of MXene Cr2C for 2 μm pulsed lasers. Nanomaterials 2023, 13, 1965.
Lau, K. Y.; Liu, X. F.; Qiu, J. R. MXene saturable absorbers in mode-locked fiber laser. Laser Photonics Rev. 2022, 16, 2100709.
Wu, L. M.; Jiang, X. T.; Zhao, J. L.; Liang, W. Y.; Li, Z. J.; Huang, W. C.; Lin, Z. T.; Wang, Y. Z.; Zhang, F.; Lu, S. B. et al. MXene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photonics Rev. 2018, 12, 1800215.
Yi, J.; Jie Li, Huang, S. H.; Hu, L. Y.; Miao, L. L.; Zhao, C. J.; Wen, S. C.; Mochalin, V. N.; Rao, A. M. Ti2CT x MXene-based all-optical modulator. InfoMat 2020, 2, 601–609.
Jiang, X. T.; Liu, S. X.; Liang, W. Y.; Luo, S. J.; He, Z. L.; Ge, Y. Q.; Wang, H. D.; Cao, R.; Zhang, F.; Wen, Q. et al. Broadband nonlinear photonics in few-layer MXene Ti3C2T x (T = F, O, or OH). Laser Photonics Rev. 2018, 12, 1700229.
Jhon, Y. I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J. H.; Gogotsi, Y.; Jhon, Y. M. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 2017, 29, 1702496.
Jhon, Y. I.; Lee, J.; Jhon, Y. M.; Lee, J. H. Ultrafast mode-locking in highly stacked Ti3C2T x MXenes for 1.9-μm infrared femtosecond pulsed lasers. Nanophotonics 2021, 10, 1741–1751.
Lei, X.; Lin, N. M. Structure and synthesis of MAX phase materials: A brief review. Crit. Rev. Solid State Mater. Sci. 2022, 47, 736–771.
Zhang, C. F.; Ma, Y. L.; Zhang, X. T.; Abdolhosseinzadeh, S.; Sheng, H. W.; Lan, W.; Pakdel, A.; Heier, J.; Nüesch, F. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 2020, 3, 29–55.
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.
Tang, Q., Zhou, Z.; Shen, P. W. Are MXenes promising anode materials for li ion batteries? Computational studies on electronic properties and li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916.
Guo, J. X.; Wang, F. X.; Li, S. H.; Wang, Y. W.; Hu, X. S.; Zu, D. Y.; Shen, Y. M.; Li, C. P. Enhanced optical properties and light-to-heat conversion performance of Ti3C2/[BMIM]BF4 nanofluids based direct absorption solar collector. Sol. Energy Mater. Sol. Cells 2022, 237, 111558.
Dong, Y. C.; Chertopalov, S.; Maleski, K.; Anasori, B.; Hu, L. Y.; Bhattacharya, S.; Rao, A. M.; Gogotsi, Y.; Mochalin, V. N.; Podila, R. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 2018, 30, 1705714.
Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015, 9, 9507–9516.
Hong, W. C.; Wyatt, B. C.; Nemani, S. K.; Anasori, B. Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bull. 2020, 45, 850–861.
Maleski, K.; Shuck, C. E.; Fafarman, A. T.; Gogotsi, Y. The broad chromatic range of two-dimensional transition metal carbides. Adv. Opt. Mater. 2021, 9, 2001563.
Nemani, S. K.; Zhang, B. W.; Wyatt, B. C.; Hood, Z. D.; Manna, S.; Khaledialidusti, R.; Hong, W. C.; Sternberg, M. G.; Sankaranarayanan, S. K. R. S.; Anasori, B. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15, 12815–12825.
Oses, C., Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309.
Feng, L.; Chen, W. T.; Fahrenholtz, W. G.; Hilmas, G. E. Strength of single-phase high-entropy carbide ceramics up to 2300 °C. J. Am. Ceram. Soc. 2021, 104, 419–427.
Fu, B.; Sun, J. X.; Wang, C.; Shang, C.; Xu, L. J.; Li, J. B.; Zhang, H. MXenes: Synthesis, optical properties, and applications in ultrafast photonics. Small 2021, 17, 2006054.
Zhou, C.; Zhao, X. H.; Xiong, Y. S.; Tang, Y. H.; Ma, X. T.; Tao, Q.; Sun, C. M.; Xu, W. L. A review of etching methods of MXene and applications of MXene conductive hydrogels. Eur. Polym. J. 2022, 167, 111063.
Chen, J.; Ding, Y. B.; Yan, D.; Huang, J. J.; Peng, S. L. Synthesis of MXene and its application for zinc-ion storage. SusMat 2022, 2, 293–318.
Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331.
Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.
Wu, M.; He, M.; Hu, Q. K.; Wu, Q. H.; Sun, G.; Xie, L. L.; Zhang, Z. Y.; Zhu, Z. G.; Zhou, A. G. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 2019, 4, 2763–2770.
Liu, F. F.; Zhou, A. G.; Chen, J. F.; Jia, J.; Zhou, W. J.; Wang, L. B.; Hu, Q. K. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 2017, 416, 781–789.
Liu, D. R.; Wang, L. B.; He, Y.; Liu, L.; Yang, Z. P.; Wang, B.; Xia, Q. X.; Hu, Q. K.; Zhou, A. G. Enhanced reversible capacity and cyclic performance of lithium-ion batteries using SnO2 interpenetrated MXene V2C architecture as anode materials. Energy Technol. 2021, 9, 2000753.
Wang, X.; Garnero, C.; Rochard, G.; Magne, D.; Morisset, S.; Hurand, S.; Chartier, P.; Rousseau, J.; Cabioc’h, T.; Coutanceau, C. et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: A route towards selective reactivity vs. water. J. Mater. Chem. A 2017, 5, 22012–22023.
Al-Temimy, A.; Prenger, K.; Golnak, R.; Lounasvuori, M.; Naguib, M.; Petit, T. Impact of cation intercalation on the electronic structure of Ti3C2T x MXenes in sulfuric acid. ACS Appl. Mater. Interfaces 2020, 12, 15087–15094.
Shen, P. C.; Lin, Y. X.; Wang, H. Z.; Park, J. H.; Leong, W. S.; Lu, A. Y.; Palacios, T.; Kong, J. CVD technology for 2-D materials. IEEE Trans. Electron Devices 2018, 65, 4040–4052.
Fan, Y. X.; Li, L.; Zhang, Y.; Zhang, X. T.; Geng, D. C.; Hu, W. P. Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals. Adv. Funct. Materials. 2022, 32, 2111357.
Öper, M.; Yorulmaz, U.; Sevik, C.; Ay, F.; Kosku Perkgöz, N. Controlled CVD growth of ultrathin Mo2C (MXene) flakes. J. Appl. Phys. 2022, 131, 025304.
Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.
Wang, L. F.; Liu, D.; Wu, B.; Wang, J. M.; Zhang, L. Z.; Chen, C.; Su, Y. Y.; Yin, H. Y.; Zhang, J. N.; Gogotsi, Y. et al. Ultrafast growth of thin hexagonal and pyramidal molybdenum nitride crystals and films. ACS Mater. Lett. 2019, 1, 383–388.
Xu, C.; Song, S.; Liu, Z. B.; Chen, L.; Wang, L. B.; Fan, D. X.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 2017, 11, 5906–5914.
Wang, D.; Zhou, C. K.; Filatov, A. S.; Cho, W.; Lagunas, F.; Wang, M. Z.; Vaikuntanathan, S.; Liu, C.; Klie, R. F.; Talapin, D. V. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023, 379, 1242–1247.
Lou, J. Y.; Wang, Y. P.; Tong, L. M. Microfiber optical sensors: A review. Sensors 2014, 14, 5823–5844.
Fu, B.; Shang, C.; Liu, H. Y.; Fan, S. Z.; Zhao, K. J.; Zhang, Y. L.; Swelm Wageh, S.; Ahmed Al-Ghamdi, A.; Wang, X. G.; Xu, L. J. et al. Recent advances and future outlook in mode-locked lasers with multimode fibers. Appl. Phys. Rev. 2023, 10, 041305.
Wang, Z.; Zhu, G.; Wang, Y.; Li, M. Y.; Singh, R.; Zhang, B. Y.; Zhang, B. Y.; Kumar, S. Fabrication techniques and stability analysis of SMF-/MMF-based differently tapered optical fiber structures. Appl. Opt. 2021, 60, 2077–2082.
Cordaro, M. H.; Rode, D. L.; Barry, T. S.; Krchnavek, R. R. Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring. J. Lightwave Technol. 1994, 12, 1524–1531.
Haddock, H. S.; Shankar, P. M.; Mutharasan, R. Fabrication of biconical tapered optical fibers using hydrofluoric acid. Mater. Sci. Eng.: B 2003, 97, 87–93.
Ahmad, H.; Ramli, R.; Yusoff, N.; Reduan, S. A.; Zamzuri, A. K.; Thambiratnam, K. Performance of Nb2C MXene coated on tapered fiber as saturable absorber for the generation of mode-locked erbium-doped fiber laser. Infrared Phys. Technol. 2021, 114, 103647.
Jafry, A. A. A.; Rosol, A. H. A.; Kasim, N.; Muhammad, A. R.; Rulaningtyas, R.; Yasin, M.; Harun, S. W. Soliton mode-locked pulse generation with a bulk structured MXene Ti3AlC2 deposited onto a D-shaped fiber. Appl. Opt. 2020, 59, 8759–8767.
Wang, L.; Li, X. H.; Wang, C.; Luo, W. F.; Feng, T. C.; Zhang, Y.; Zhang, H. Few-layer MXene Ti3C2T x (T = F, O, Or OH) for robust pulse generation in a compact Er-doped fiber laser. ChemNanoMat 2019, 5, 1233–1238.
He, J. S.; Li, Y. H.; Lou, Y. J.; Zeng, G. H.; Tao, L. L. Optical deposition of PtSe2 on fiber end face for Yb-doped mode-locked fiber laser. Optik 2019, 198, 163298.
Wang, Z. H.; Li, H. B.; Luo, M. L.; Chen, T. H.; Xia, X. F.; Chen, H. L.; Ma, C. Y.; Guo, J.; He, Z. W.; Song, Y. F. et al. MXene photonic devices for near-infrared to mid-infrared ultrashort pulse generation. ACS Appl. Nano Mater. 2020, 3, 3513–3522.
Di Bella, S. Second-order nonlinear optical properties of transition metal complexes. Chem. Soc. Rev. 2001, 30, 355–366.
Hosseini, K.; Osman, M. S.; Mirzazadeh, M.; Rabiei, F. Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation. Optik 2020, 206, 164259.
Wei, C.; Zhou, L. Q.; Wang, D. S.; Chi, H.; Huang, H.; Zhang, H.; Liu, Y. MXene-Ti3C2T x for watt-level high-efficiency pulse generation in a 2.8 μm mid-infrared fiber laser. Photonics Res. 2020, 8, 972–977.
Boggio, J. M. C.; Fragnito, H. L. Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers. J. Opt. Soc. Am. B 2007, 24, 2046–2054.
Thibierge, C.; L’Hôte, D.; Ladieu, F.; Tourbot, R. A method for measuring the nonlinear response in dielectric spectroscopy through third harmonics detection. Rev. Sci. Instrum. 2008, 79, 103905.
Pálfalvi, L.; Tóth, B. C.; Almási, G.; Fülöp, J. A.; Hebling, J. A general Z-scan theory. Appl. Phys. B 2009, 97, 679–685.
Jiang, X. T.; Li, W. J.; Hai, T.; Yue, R.; Chen, Z. W.; Lao, C. S.; Ge, Y. Q.; Xie, G. Q.; Wen, Q.; Zhang, H. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. npj 2D Mater. Appl. 2019, 3, 34.
Tian, Q. Y.; Yin, P.; Zhang, T.; Zhou, L. B.; Xu, B.; Luo, Z. Q.; Liu, H. L.; Ge, Y. Q.; Zhang, J.; Liu, P. et al. MXene Ti3C2T x saturable absorber for passively Q-switched mid-infrared laser operation of femtosecond-laser-inscribed Er:Y2O3 ceramic channel waveguide. Nanophotonics 2020, 9, 2495–2503.
Wei, H.; Wang, Y. D.; Wang, Y. W.; Fan, W. X.; Zhou, L.; Long, M. Q.; Xiao, S.; He, J. Giant two-photon absorption in MXene quantum dots. Opt. Express 2022, 30, 8482–8493.
Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769.
Zheng, X.; Zhang, Y. W.; Chen, R. Z.; Cheng, X.; Xu, Z. J.; Jiang, T. Z-scan measurement of the nonlinear refractive index of monolayer WS2. Opt. Express 2015, 23, 15616–15623.
Gao, L. F.; Chen, H. L.; Kuklin, A. V.; Wageh, S.; Al-Ghamdi, A. A.; Ågren, H.; Zhang, H. Optical properties of few-layer Ti3CN MXene: From experimental observations to theoretical calculations. ACS Nano 2022, 16, 3059–3069.
Wang, J.; Gu, B.; Wang, H. T.; Ni, X. W. Z-scan analytical theory for material with saturable absorption and two-photon absorption. Opt. Commun. 2010, 283, 3525–3528.
Zhang, L.; Humphrey, M. G. Multiphoton absorption at metal alkynyl complexes. Coord. Chem. Rev. 2022, 473, 214820.
Zhou, F.; Ran, X.; Fan, D. Y.; Lu, S. B.; Ji, W. Perovskites: Multiphoton absorption and applications. Adv. Opt. Mater. 2021, 9, 2100292.
Li, C. F.; Zhang, L.; Yang, M.; Wang, H.; Wang, Y. X. Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine. Phys. Rev. A 1994, 49, 1149–1157.
Su, W. J.; Cooper, T. M.; Brant, M. C. Investigation of reverse-saturable absorption in brominated porphyrins. Chem. Mater. 1998, 10, 1212–1213.
Peelaers, H.; Kioupakis, E.; Van De Walle, C. G. Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2. Appl. Phys. Lett. 2012, 100, 011914.
Cheng, Z. Z.; Tsang, H. K.; Wang, X. M.; Xu, K.; Xu, J. B. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 4400106.
Wang, K. P.; Wang, J.; Fan, J. T.; Lotya, M.; O’neill, A.; Fox, D.; Feng, Y. Y.; Zhang, X. Y.; Jiang, B. X.; Zhao, Q. Z. et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 2013, 7, 9260–9267.
Lu, S. B.; Miao, L. L.; Guo, Z. N.; Qi, X.; Zhao, C. J.; Zhang, H.; Wen, S. C.; Tang, D. Y.; Fan, D. Y. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express 2015, 23, 11183–11194.
DeSalvo, R.; Hagan, D. J.; Sheik-Bahae, M.; Stegeman, G.; Stryland, E. W. V.; Vanherzeele, H. Self-focusing and self-defocusing by cascaded second-order effects in KTP. Opt. Lett. 1992, 17, 28–30.
De Araújo, C. B.; Gomes, A. S. L.; Boudebs, G. Techniques for nonlinear optical characterization of materials: A review. Rep. Prog. Phys. 2016, 79, 036401.
Lim, G. K.; Chen, Z. L.; Clark, J.; Goh, R. G. S.; Ng, W. H.; Tan, H. W.; Friend, R. H.; Ho, P. K. H.; Chua, L. L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 2011, 5, 554–560.
Cheng, J. L.; Vermeulen, N.; Sipe, J. E. Third order optical nonlinearity of graphene. New J. Phys. 2014, 16, 053014.
Xu, X. T.; Ruan, S. C.; Zhai, J. P.; Li, L.; Pei, J. H.; Tang, Z. K. Facile active control of a pulsed erbium-doped fiber laser using modulation depth tunable carbon nanotubes. Photonics Res. 2018, 6, 996–1002.
Kelly, S. M. J. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett. 1992, 28, 806–807.
Nelson, L. E.; Jones, D. J.; Tamura, K.; Haus, H. A.; Ippen, E. P. Ultrashort-pulse fiber ring lasers. Appl. Phys. B 1997, 65, 277–294.
Yang, F. M.; Ge, Y. Q.; Yin, T.; Guo, J.; Zhang, F.; Tang, X.; Qiu, M.; Liang, W. Y.; Xu, N.; Wang, C. et al. Ti3C2T x MXene quantum dots with enhanced stability for ultrafast photonics. ACS Appl. Nano Mater. 2020, 3, 11850–11860.
Ma, C. Y.; Huang, W. C.; Wang, Y. Z.; Adams, J.; Wang, Z. H.; Liu, J.; Song, Y. F.; Ge, Y. Q.; Guo, Z. Y.; Hu, L. P. et al. MXene saturable absorber enabled hybrid mode-locking technology: A new routine of advancing femtosecond fiber lasers performance. Nanophotonics 2020, 9, 2451–2458.
Huang, W. C.; Ma, C. Y.; Li, C.; Zhang, Y.; Hu, L. P.; Chen, T. T.; Tang, Y. F.; Ju, J. F.; Zhang, H. Highly stable MXene (V2CT x )-based harmonic pulse generation. Nanophotonics 2020, 9, 2577–2585.
Ahmad, H.; Ramli, R.; Ismail, N. N.; Aidit, S. N.; Yusoff, N.; Samion, M. Z. Passively mode locked thulium and thulium/holmium doped fiber lasers using MXene Nb2C coated microfiber. Sci. Rep. 2021, 11, 11652.
Renninger, W. H.; Chong, A.; Wise, F. W. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 389–398.
Yuan, J. H.; Li, J. R.; Li, L. J.; Han, J.; Shen, Y. J.; Li, Y. Y.; Wu, Z. Y.; Li, S. C. A passively Q-switched Tm:YAlO3 bulk laser with a MXene Ti3C2T x saturable absorber. Optik 2022, 252, 168509.
Wang, C.; Peng, Q. Q.; Fan, X. W.; Liang, W. Y.; Zhang, F.; Liu, J.; Zhang, H. MXene Ti3C2T x saturable absorber for pulsed laser at 1.3 μm. Chin. Phys. B 2018, 27, 094214.
Yang, Q.; Zhang, F.; Zhang, N. Y.; Zhang, H. Few-layer MXene Ti3C2T x (T = F, O, or OH) saturable absorber for visible bulk laser. Opt. Mater. Express 2019, 9, 1795–1802.
Wu, L. M.; Yuan, X. X.; Ma, D. T.; Zhang, Y.; Huang, W. C.; Ge, Y. Q.; Song, Y. F.; Xiang, Y. J.; Li, J. Q.; Zhang, H. Recent advances of spatial self-phase modulation in 2D materials and passive photonic device applications. Small 2020, 16, 2002252.
Zang, X.; Liu, Z. T.; Xu, Y. S.; Wang, Y.; Wang, Q.; Li, Z. Z.; Wang, L. Spatial light modulation for femtosecond laser manufacturing: Current developments and challenges. Sci. China Technol. Sci. 2024, 67, 60–72.
Hickmann, J. M.; Gomes, A. S. L.; De Araújo, C. B. Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium. Phys. Rev. Lett. 1992, 68, 3547–3550.
Lu, L.; Wang, W. H.; Wu, L. M.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q.; Fan, D. Y.; Zhang, H. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics 2017, 4, 2852–2861.
Li, J.; Zhang, Z. L.; Yi, J.; Miao, L. L.; Huang, J.; Zhang, J. R.; He, Y.; Huang, B.; Zhao, C. J.; Zou, Y. H. et al. Broadband spatial self-phase modulation and ultrafast response of MXene Ti3C2T x (T = O, OH or F). Nanophotonics, 2020, 9, 2415–2424.
Xiao, S.; He, Y. L.; Dong, Y. L.; Wang, Y. D.; Zhou, L.; Zhang, X. J.; Wang, Y. W.; He, J. Near-infrared spatial self-phase modulation in ultrathin niobium carbide nanosheets. Front. Phys. 2021, 9, 674820.
Zhang, C. X.; Zhang, L.; Zhang, H.; Fu, B.; Wang, J. Y.; Qiu, M. Pulsed polarized vortex beam enabled by metafiber lasers. PhotoniX 2024, 5, 36.
Xiong, G. L.; Zhuang, J. H.; Feng, W. L. Fiber-optic lead ion sensor based on MXene film integrated michelson interference structure. Phys. Scr. 2023, 98, 025708.
Yi, D.; Huang, Z. W.; Fu, W. Q.; Geng, Y. F.; Geng, Y. F.; Liu, F.; Liu, F.; Li, X. J. Ultra-sensitive all-optical phase modulation based on a fiber optic interferometer combined with Ti3C2T x MXene-incorporated PDMS. Opt. Lett. 2023, 48, 4456–4459.
Sui, L.; Wang, T. S.; Ma, X. N.; Li, J. Y.; Lu, M.; Ma, W. Z. 2-μm short data pulse all-optical wavelength converter based on MXene microfiber. Opt. Commun. 2024, 550, 129952.
Yang, Z.; Tan, W. M.; Zhang, T. J.; Chen, C. D.; Wang, Z. X.; Mao, Y.; Ma, C. X.; Lin, Q.; Bi, W. J.; Yu, F. et al. MXene-based broadband ultrafast nonlinear activator for optical computing. Adv. Opt. Mater. 2022, 10, 2200714.
Sun, J. X.; Cheng, H. R.; Xu, L. J.; Fu, B.; Liu, X. H.; Zhang, H. Ag/MXene composite as a broadband nonlinear modulator for ultrafast photonics. ACS Photonics 2023, 10, 3133–3142.
Wu, Q.; Huang, W. C.; Wang, Y. Z.; Wang, C.; Zheng, Z.; Chen, H.; Zhang, M.; Zhang, H. All-optical control of microfiber knot resonator based on 2D Ti2CT x MXene. Adv. Opt. Mater. 2020, 8, 1900977.
Wang, C.; Wang, Y. Z.; Jiang, X. T.; Xu, J. W.; Huang, W. C.; Zhang, F.; Liu, J. F.; Yang, F. M.; Song, Y. F.; Ge, Y. Q. et al. MXene Ti3C2T x : A promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 2019, 7, 1900060.
Wu, Q.; Chen, S.; Wang, Y. Z.; Wu, L. M.; Jiang, X. T.; Zhang, F.; Jin, X. X.; Jiang, Q. Y.; Zheng, Z.; Li, J. Q. et al. MZI-based all-optical modulator using MXene Ti3C2T x (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 2019, 4, 1800532.
Wang, P. F.; Li, S.; Ling, F. Z.; Farrell, G.; Lewis, E.; Yin, Y. All-optical modulator based on a microfibre coil resonator functionalized with MXene. Opt. Fiber Technol. 2022, 68, 102776.
Wang, C.; Wu, Z. Y.; Li, X. H.; Feng, J. J.; Luo, W. F.; Ge, Y. Q.; Qu, M. J.; Jing, L. R.; Shu, T. K. MXene Ti3C2T x modulator for robust generation of soliton molecules. ChemNanoMat 2020, 6, 1502–1506.
Gao, B.; Li, Y. Y.; Ma, C. Y.; Shu, Y. Q.; Wu, G.; Chen, B. K.; Huo, J. Y.; Han, Y.; Liu, L.; Zhang, Y. Ta4C3 MXene as a saturable absorber for femtosecond mode-locked fiber lasers. J. Alloys Compd. 2022, 900, 163529.
Zhao, M. F.; Zhang, Z. M.; Feng, X. Y.; Zong, M. Y.; Liu, J.; Xu, X. D.; Zhang, H. High repetition rate passively Q-switched laser on Nd:SRA at 1049 nm with MXene Ti3C2T x . Chin. Opt. Lett. 2020, 18, 041401.
Ahmad, H.; Ramli, R.; Yusoff, N.; Samion, M. Z.; Ismail, M. F.; Bayang, L.; Aidit, S. N.; Zamzuri, A. K.; Thambiratnam, K. 155 nm-wideband and tunable Q-switched fiber laser using an MXene Ti3C2T x coated microfiber based saturable absorber. Laser Phys. Lett. 2020, 17, 085103.
Hao, Q. Q.; Liu, J. J.; Zhang, Z.; Zhang, B.; Zhang, F.; Yang, J. M.; Liu, J.; Su, L. B.; Zhang, H. Mid-infrared Er:CaF2-SrF2 bulk laser Q-switched by MXene Ti3C2T x absorber. Appl. Phys. Express 2019, 12, 085506.
Huang, H. F.; Wang, J. W.; Xu, N.; Liu, S. X.; Liang, G. W.; Wen, Q. Ti2CT x MXene as a saturable absorber for passively Q-switched solid-state lasers. Polymers 2021, 13, 247.
Wang, J.; Liu, S. C.; Wang, Y. G.; Wang, T. J.; Shang, S. G.; Ren, W. Magnetron-sputtering deposited molybdenum carbide MXene thin films as a saturable absorber for passively Q-switched lasers. J. Mater. Chem. C 2020, 8, 1608–1613.
Ahmad, H.; Ismail, N. N.; Aidit, S. N.; Reduan, S. A.; Samion, M. Z.; Yusoff, N. 2.08μm Q-switched holmium fiber laser using niobium carbide-polyvinyl alcohol (Nb2C-PVA) as a saturable absorber. Opt. Commun. 2021, 490, 126888.
Li, G. Q.; Li, G. Q.; Li, T.; Li, T.; Qiao, W. C.; Qiao, W. C.; Feng, T. L.; Feng, C. Y.; Zhao, J.; Li, G. Q. et al. Passively Q-switched Er:Lu2O3 laser with MXene material Ti4N3T x (T = F, O, or OH) as a saturable absorber. Opt. Lett. 2020, 45, 4256–4259.
502
Views
93
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).