AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Stabilizing zinc anodes with robust interfacial layer at bending states toward flexible zinc batteries

Jianyu Chen1Yuwei Zhu1Fanlai Zhang1Yizhou Wang2 ( )Wendi Xu1Yu Zhang1,3Li Shi1Xing Qiang4Yanwen Ma1,5 ( )Jin Zhao1 ( )
State Key Laboratory of Flexible Electronics (LoFF) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
New Energy Technology Engineering Lab of Jiangsu Province, School of Science, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Jiangsu Materials Research Society, Nanjing 210003, China
Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, China
Show Author Information

Graphical Abstract

The development of a robust interfacial layer (RIL) for Zn metal anodes in aqueous Zn-ion batteries suppresses dendrite growth and enhances cycling performance. The RIL film regulates Zn deposition, even under extreme bending, significantly improving the stability and flexibility of Zn|MnO2 batteries, making them suitable for flexible wearable applications.

Abstract

Flexible energy storage plays a crucial role in the field of flexible electronics, because it provides the energy supply, and its technological advancement directly affects the performance and application scope of flexible electronics. As an important flexible energy storage technology member, aqueous zinc (Zn) ion batteries (AZIBs) have garnered considerable attention due to their high safety and low cost. However, the development of flexible AZIBs is hindered by Zn metal anodes (ZMAs), where Zn is prone to growing into dendritic structures, especially in a curved state, and thus leads to battery failure. Herein, we design a robust interfacial layer (RIL) for stabilizing ZMAs in flexible AZIBs, whose introduction constructs uniform Zn ion channels and releases stress accumulation on the anode surface. Various experiments and calculations are employed to verify the effectiveness of RIL in suppressing Zn dendrite at bending states. Furthermore, a Zn|MnO2 flexible pouch battery with RIL is demonstrated with stable cycling performance during bending. We believe this study provides new possibilities for regulating Zn deposition under bending conditions and extends its application to flexible wearable aqueous metal batteries.

Electronic Supplementary Material

Download File(s)
7224_ESM.pdf (2.5 MB)

References

[1]

Aramendia, E.; Brockway, P. E.; Taylor, P. G.; Norman, J. B.; Heun, M. K.; Marshall, Z. Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems. Nat. Energy 2024, 9, 803–816.

[2]

Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.

[3]

Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.

[4]

Deng, R. R.; Gao, M. Y.; Zhang, B.; Zhang, Q. B. Solvent-mediated synthesis of functional powder materials from deep eutectic solvents for energy storage and conversion: A review. Adv. Energy Mater. 2024, 14, 2303707.

[5]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai , Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[6]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[7]

Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.

[8]

Zhao, J. P.; Wang, Y. H.; Qian, Y. D.; Jin, H. L.; Tang, X. Y.; Huang, Z. M.; Lou, J. Y.; Zhang, Q. C.; Lei, Y.; Wang, S. Hierarchical design of cross-linked NiCo2S4 nanowires bridged NiCo-hydrocarbonate polyhedrons for high-performance asymmetric supercapacitor. Adv. Funct. Mater. 2023, 33, 2210238.

[9]

Shao, C. X.; Zhao, Y.; Qu, L. T. Recent advances in highly integrated energy conversion and storage system. SusMat 2022, 2, 142–160.

[10]

Zhu, G. Y.; Hou, Y. N.; Lu, J. Q.; Zhang, H. C.; Zhuang, Z. C.; Baig, M. M.; Khan, M. Z.; Akram, M. A.; Dong, S. Y.; Liu, P. et al. MXene decorated 3D-printed carbon black-based electrodes for solid-state micro-supercapacitors. J. Mater. Chem. A 2023, 11, 25422–25428.

[11]
Hong, C.; Tao, R. M.; Tan, S. S.; Pressley, L. A.; Bridges, C. A.; Li, H. Y.; Liu, X. L.; Li, H. F.; Li, J. L.; Yuan, H. Y. et al. In situ cyclized polyacrylonitrile coating: Key to stabilizing porous high-entropy oxide anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 2024 , 2412177, in press, doi: 10.1002/adfm.202412177.
[12]

Liu, X. L.; Tao, R. M.; Li, C.; Wang, J. X.; Yao, S. H.; Hong, C.; Li, H. Y.; Geng, J. Z.; Liang, J. Y. Inert salt-assisted solvent-free synthesis of high-entropy oxide towards high-performance lithium-ion batteries. Chem. Eng. J. 2024, 484, 149791.

[13]

Zhang, K. L.; Shi, X.; Jiang, H. B.; Zeng, K. W.; Zhou, Z. H.; Zhai, P.; Zhang, L. H.; Peng, H. S. Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nat. Protoc. 2024, 19, 1557–1589.

[14]

Yang, H. L.; Li, S. B.; Wu, Y. Z.; Bao, X. L.; Xiang, Z. Y.; Xie, Y. L.; Pan, L. L.; Chen, J. X.; Liu, Y. W.; Li, R. W. Advances in flexible magnetosensitive materials and devices for wearable electronics. Adv. Mater. 2024, 36, 2311996.

[15]

Zhou, Z. Y.; Xie, S. J.; Cai, H.; Colli, A. N.; Monnens, W.; Zhang, Q. C.; Guo, W.; Zhang, W.; Han, N.; Pan, H. W. et al. A synchronous-twisting method to realize radial scalability in fibrous energy storage devices. Sci. Adv. 2024, 10, eado7826.

[16]

He, J. Y.; Cao, L. Q.; Cui, J. J.; Fu, G. W.; Jiang, R. Y.; Xu, X.; Guan, C. Flexible energy storage devices to power the future. Adv. Mater. 2024, 36, 2306090.

[17]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.

[18]

Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

[19]

Chen, J. Y.; Wang, Y. Z.; Li, S. J.; Chen, H. R.; Qiao, X.; Zhao, J.; Ma, Y. W.; Alshareef, H. N. Porous metal current collectors for alkali metal batteries. Adv. Sci. 2023, 10, 2205695.

[20]

Yang, Y. Y.; Zhang, Y. N.; Zhang, J.; Zheng, X. R.; Gan, Z. X.; Lin, H.; Hong, M. H.; Jia, B. H. Graphene metamaterial 3D conformal coating for enhanced light harvesting. ACS Nano 2023, 17, 2611–2619.

[21]

Chen, J. Y.; Kang, T.; Zhang, F. L.; Chen, X. D.; Wang, X. S.; Ma, Y. W.; Zhao, J. Interfacial Zn ion capture and desolvation engineering for high-performance Zn metal anode. FlatChem 2024, 46, 100695.

[22]

Tu, H. F.; Wang, Z. C.; Xue, J. Y.; Tang, Z. Y.; Liu, Y.; Liu, X. F.; Liu, L. W.; Lu, S. W.; Weng, S. X.; Gao, Y. W. et al. Regulating non-equilibrium solvation structure in locally concentrated ionic liquid electrolytes for wide-temperature and high-voltage lithium metal batteries. Angew. Chem., Int. Ed. 2024, 4, e202412896.

[23]

He, M. N.; Hector, L. G.; Dai, F.; Xu, F.; Kolluri, S.; Hardin, N.; Cai, M. Industry needs for practical lithium-metal battery designs in electric vehicles. Nat. Energy 2024, 9, 1199–1205.

[24]

Li, M. N.; Wang, C. Y.; Davey, K.; Li, J. X.; Li, G. J.; Zhang, S. L.; Mao, J. F.; Guo, Z. P. Recent progress in electrolyte design for advanced lithium metal batteries. SmartMat 2023, 4, e1185.

[25]

Zhu, G. Y.; Wu, Q. Z.; Zhang, X. H.; Bao, Y. W.; Zhang, X.; Shi, Z. Y.; Zhang, Y. Z.; Ma, L. B. Designing metal sulfide-based cathodes and separators for suppressing polysulfide shuttling in lithium-sulfur batteries. Nano Res. 2024, 17, 2574–2591.

[26]

Li, H. Y.; Hong, C.; Tao, R. M.; Liu, X. L.; Wang, J. X.; Chen, J. Y.; Yao, S. H.; Geng, J. Z.; Zheng, G.; Liang, J. Y. Hybrid conductive-lithophilic-fluoride triple protection interface engineering: Dendrite-free reverse lithium deposition for high-performance lithium metal batteries. J. Energy Chem. 2025, 101, 416–428.

[27]

Guo, C.; Guo, Y. Q.; Yao, S. H.; Tao, R. M.; Liu, X. L.; Wang, J. X.; Li, H. F.; Li, H. Y.; Hong, C.; Geng, J. Z. et al. Multifunctional nitrile additives for inducing pseudo-concentration gel-polymer electrolyte: Enabling stable high-voltage lithium metal batteries. Energy Storage Mater. 2024, 71, 103683.

[28]

Wang, Y. Z.; Chen, J. Y.; Chen, Z. B.; He, Q.; Tian, Z. N.; Zhao, J.; Ma, Y. W.; Alshareef, H. N. Flat Zn deposition at battery anode via an ultrathin robust interlayer. Nano Res. 2024, 17, 8104–8111.

[29]

Li, C.; Yuan, H. N.; Liu, T.; Zhang, R.; Zhu, J. X.; Cui, H. L.; Wang, Y. B.; Cao, D. Y.; Wang, D. H.; Zhi, C. Y. Distinguish MnO2/Mn2+ conversion/Zn2+ intercalation/H+ conversion chemistries at different potentials in aqueous Zn||MnO2 batteries. Angew. Chem., Int. Ed. 2024, 63, e202403504.

[30]

Chang, C. Y.; Hu, S. L.; Li, T. T.; Zeng, F. B.; Wang, D.; Guo, S. D.; Xu, M. W.; Liang, G. J.; Tang, Y. B.; Li, H. F. et al. A robust gradient solid electrolyte interphase enables fast Zn dissolution and deposition dynamics. Energy Environ. Sci. 2024, 17, 680–694.

[31]

Liu, S. L.; Zhang, R. Z.; Wang, C.; Mao, J. F.; Chao, D. L.; Zhang, C. F.; Zhang, S. L.; Guo, Z. P. Zinc ion batteries: Bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem., Int. Ed. 2024, 63, e202400045.

[32]

Qi, J. T.; Tang, Y. C.; Feng, Z. F.; Yan, J. P.; Liu, G. G.; Ye, M. H.; Du, W. C.; Yang, Q.; Wei, Y.; Zhang, Y. F. et al. Offense-defense-balanced strategy escorting tellurium oxidation conversion towards energetic and long-life Zn batteries. Adv. Energy Mater. 2024, 14, 2303616.

[33]

He, Q.; Hu, T.; Wu, Q.; Wang, C.; Han, X. R.; Chen, Z. B.; Zhu, Y. W.; Chen, J. Y.; Zhang, Y.; Shi, L. et al. Tunnel-oriented VO2 (B) cathode for high-rate aqueous zinc-ion batteries. Adv. Mater. 2024, 36, 2400888.

[34]

Zhu, G. Y.; Zhang, H. C.; Lu, J. Q.; Hou, Y. N.; Liu, P.; Dong, S. Y.; Pang, H.; Zhang, Y. Z. 3D printing of MXene-enhanced ferroelectric polymer for ultrastable zinc anodes. Adv. Funct. Mater. 2024, 34, 2305550.

[35]

Zhu, G. Y.; Xiao, D. W.; Chen, Q. Spontaneous formation of porous zinc in rechargeable zinc batteries. J. Electrochem. Soc. 2021, 168, 110524.

[36]

Nie, C. H.; Wang, G. L.; Wang, D. D.; Wang, M. Y.; Gao, X. R.; Bai, Z. C.; Wang, N. N.; Yang, J.; Xing, Z.; Dou, S. X. Recent progress on Zn anodes for advanced aqueous zinc-ion batteries. Adv. Energy Mater. 2023, 13, 2300606.

[37]

Wang, L. P.; Zhang, B.; Zhou, W. H.; Zhao, Z. W.; Liu, X.; Zhao, R. Z.; Sun, Z. H.; Li, H. P.; Wang, X.; Zhang, T. S. et al. Tandem chemistry with Janus mesopores accelerator for efficient aqueous batteries. J. Am. Chem. Soc. 2024, 146, 6199–6208.

[38]

Zou, Y. H.; Wu, Y. Z.; Wei, W. Z.; Qiao, C. P.; Lu, M. Y.; Su, Y. W.; Guo, W. Y.; Yang, X. Z.; Song, Y. Q.; Tian, M. et al. Establishing pinhole deposition mode of Zn via scalable monolayer graphene film. Adv. Mater. 2024, 36, 2313775.

[39]

Chen, Z. B.; Wang, Y. Z.; Wu, Q.; Wang, C.; He, Q.; Hu, T.; Han, X. R.; Chen, J. L.; Zhang, Y.; Chen, J. Y. et al. Grain boundary filling empowers (002)-textured Zn metal anodes with superior stability. Adv. Mater. 2024, 36, 2411004.

[40]

Wang, J. H.; Chen, L. F.; Dong, W. X.; Zhang, K. L.; Qu, Y. F.; Qian, J. W.; Yu, S. H. Three-dimensional zinc-seeded carbon nanofiber architectures as lightweight and flexible hosts for a highly reversible zinc metal anode. ACS Nano 2023, 17, 19087–19097.

[41]

Zhang, F.; Qian, J. W.; Dong, W. X.; Qu, Y. F.; Chen, J. W.; Wang, H.; Chen, L. F. A facile tip shielding strategy for highly reversible Zn anode. Chem. Eng. J. 2023, 478, 147406.

[42]

Shi, Y.; Wang, R.; Bi, S. S.; Yang, M.; Liu, L. L.; Niu, Z. Q. An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at-70 °C. Adv. Funct. Mater. 2023, 33, 2214546.

[43]

Fan, H. F.; Wang, M.; Yin, Y. B.; Liu, Q. F.; Tang, B.; Sun, G. Q.; Wang, E. D.; Li, X. F. Tailoring interfacial Zn2+ coordination via a robust cation conductive film enables high performance zinc metal battery. Energy Storage Mater. 2022, 49, 380–389.

[44]

Zhang, H. W.; Zhong, Y.; Li, J. B.; Liao, Y. Q.; Zeng, J. L.; Shen, Y.; Yuan, L. X.; Li, Z.; Huang, Y. H. Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 2023, 13, 2203254.

[45]

Zhu, K. P.; Luo, J.; Zhang, D. H.; Wang, N. Y.; Pan, S. B.; Zhou, S. J.; Zhang, Z. J.; Guo, G. D.; Yang, P.; Fan, Y. et al. Molecular engineering enables hydrogel electrolyte with ionic hopping migration and self-healability toward dendrite-free zinc-metal anodes. Adv. Mater. 2024, 36, 2311082.

[46]

Li, Q.; Wang, D. H.; Yan, B. X.; Zhao, Y. W.; Fan, J.; Zhi, C. Y. Dendrite issues for zinc anodes in a flexible cell configuration for zinc-based wearable energy-storage devices. Angew. Chem., Int. Ed. 2022, 61, e202202780.

[47]

Yuan, Z. Y.; Li, L. L.; Zhao, L. J.; Chen, R. Y.; Li, D. D.; Han, W.; Wang, L. L. A non-flammable and flexible aluminum derived lithium-ion storage device with a wide temperature range of operation. Small 2024, 20, 2310992.

[48]

Zhou, X. Z.; Wen, B.; Cai, Y. C.; Chen, X. M.; Li, L.; Zhao, Q.; Chou, S. L.; Li, F. J. Interfacial engineering for oriented crystal growth toward dendrite-free Zn anode for aqueous zinc metal battery. Angew. Chem., Int. Ed. 2024, 63, e202402342.

[49]

Cao, J.; Wu, H. Y.; Yue, Y. L.; Zhang, D. D.; Li, B. Y.; Luo, D.; Zhang, L. L.; Qin, J. Q.; Zhang, X. Y.; Yang, X. L. Facilely constructing ultrahigh lattice-matched CuZn5 epitaxial interface for dendrite-free Zn metal anode. J. Energy Chem. 2024, 99, 671–680.

[50]

Zhang, H. N.; Shui, T.; Zhang, W.; Sun, Z. M. Parallel zinc deposition enabled by diethylene triaminepentaacetic acid induced interfacial complex for dendrite-free zinc metal anode. Energy Storage Mater. 2024, 71, 103595.

[51]

Li, Y. Q.; Peng, C. H.; Gao, X. T.; Liu, H. R.; Wang, W. J. Stress relief and crystal face transition process contribute to the stability of zinc anodes. J. Energy Chem. 2024, 99, 593–603.

[52]

Chen, J. Y.; Qiao, X.; Han, X. R.; Zhang, J. H.; Wu, H. B.; He, Q.; Chen, Z. B.; Shi, L.; Wang, Y. Z.; Xie, Y. N. et al. Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy 2022, 103, 107814.

[53]

Chen, J. Y.; Xu, X.; He, Q.; Ma, Y. W. Advanced current collectors for alkali metal anodes. Chem. Res. Chin. Univ. 2020, 36, 386–401.

[54]

Gu, J. N.; Chen, H.; Shi, Y.; Cao, Z. J.; Du, Z. G.; Li, B.; Yang, S. B. Eliminating lightning-rod effect of lithium anodes via sine-wave analogous MXene layers. Adv. Energy Mater. 2022, 12, 2201181.

[55]

Weng, G.; Dong, Z. X.; Xiang, P.; Zhu, Y. L.; Wu, C.; Yang, X. Z.; Liu, H. K.; Dou, S. X. Critical criteria depicting the rational design of Zn anode current collector. Adv. Funct. Mater. 2024, 34, 2400839.

[56]

Guo, X. X.; He, G. J. Opportunities and challenges of zinc anodes in rechargeable aqueous batteries. J. Mater. Chem. A 2023, 11, 11987–12001.

[57]

Chen, Z. B.; Wu, Q.; Han, X. R.; Wang, C.; Chen, J. L.; Hu, T.; He, Q.; Zhu, X. Y.; Yuan, D.; Chen, J. Y. et al. Converting commercial Zn foils into single (002)-textured Zn with millimeter-sized grains for highly reversible aqueous zinc batteries. Angew. Chem., Int. Ed. 2024, 63, e202401507.

[58]

Chen, Z. B.; Zhao, J.; He, Q.; Li, M. S.; Feng, S.; Wang, Y. Z.; Yuan, D.; Chen, J. Y.; Alshareef, H. N.; Ma, Y. W. Texture control of commercial Zn foils prolongs their reversibility as aqueous battery anodes. ACS Energy Lett. 2022, 7, 3564–3571.

[59]

Zhao, Q. S.; Xu, T.; Liu, K.; Du, H. S.; Zhang, M.; Wang, Y. X.; Yang, L. X.; Zhang, H.; Wang, X.; Si, C. L. Biomass-based functional materials for rechargeable Zn-ion batteries. Energy Storage Mater. 2024, 71, 103605.

[60]

Shi, X.; Xie, J. H.; Wang, J.; Xie, S. L.; Yang, Z. J.; Lu, X. H. A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 2024, 15, 302.

[61]

Yang, X. Z.; Li, C.; Sun, Z. T.; Yang, S.; Shi, Z. X.; Huang, R.; Liu, B. Z.; Li, S.; Wu, Y. H.; Wang, M. L. et al. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 2021, 33, 2105951.

[62]

Zhang, S. J.; Ye, J. J.; Ao, H. S.; Zhang, M. Y.; Li, X. L.; Xu, Z. B.; Hou, Z. G.; Qian, Y. T. In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries. Nano Res. 2023, 16, 449–457.

[63]

Zhang, Q.; Dai, Y. H.; Zhao, K. N.; Zhang, C. Y.; Lu, R. H.; Li, J. H.; Jin, S. H.; Zhang, L.; An, Q. Y.; Mai, L. Q. Dynamic reconstruction of Ni–Zn alloy solid-electrolyte interface for highly stable Zn anode. Nano Res. 2023, 16, 11604–11611.

[64]

Tao, F.; Feng, K. J.; Liu, Y.; Ren, J. Z.; Xiong, Y.; Li, C. B.; Ren, F. Z. Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries. Nano Res. 2023, 16, 6789–6797.

[65]

Zhang, F.; Qian, J. W.; Dong, W. X.; Qu, Y. F.; Chen, K.; Chen, J. W.; Cui, Y. F.; Chen, L. F. Integration of confinement crosslinking and in situ grafting for constructing artificial interphases toward stabilized zinc anodes. Energy Environ. Sci. 2024, 17, 7258–7270.

[66]

Wu, J. Y.; Li, M. C.; Ding, X.; Chen, Z. M.; Luo, J.; Zhang, Q. L.; Qiu, Y. B.; Wang, Q.; Liu, W.; Yang, C. K. Upgrading Gel Electrolytes through electrostatic-induced dual-salt paradigm for superior Zn-ion battery performance. Small 2024, 20, 2400390.

[67]

Li, B.; Zeng, Y.; Zhang, W. S.; Lu, B. G.; Yang, Q.; Zhou, J.; He, Z. X. Separator designs for aqueous zinc-ion batteries. Sci. Bull. 2024, 69, 688–703.

Nano Research
Article number: 94907224
Cite this article:
Chen J, Zhu Y, Zhang F, et al. Stabilizing zinc anodes with robust interfacial layer at bending states toward flexible zinc batteries. Nano Research, 2025, 18(3): 94907224. https://doi.org/10.26599/NR.2025.94907224

1360

Views

225

Downloads

1

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 November 2024
Revised: 25 December 2024
Accepted: 26 December 2024
Published: 24 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return