Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Emerging machine learning (ML) approaches have been adopted in various material systems to predict novel properties with the assistance of the corresponding large datasets. For new materials, however, collecting sufficient data points for model training is not feasible, which is the case for gold nanoparticle/polymer hybrid films. In this study, an ML approach coupled with finite element modeling was proposed for predicting the optical and photothermal properties of gold nanoparticle/polymer hybrid films. Experimental datasets of the optical and photothermal properties were built using results from the literature. Then, finite element analyses were conducted to generate synthetic data to satisfy the quality and quantity of the data required for training models. Correlation analysis and model training were performed using the datasets with and without synthetic data to evaluate their effects on predicting the performance of the ML models. The relative importance of features to targets (properties) was evaluated by correlation analysis. ML models with high accuracy were obtained by training various models from conventional to newly developed algorithms. Advantages, weaknesses, and improvement of the synthetic data addition were discussed. The proposed workflow and framework offer reliable prediction of optical and photothermal properties over different combinations of gold nanoparticles and polymer matrices, which can be extended to include more features related to processing parameters and microstructures.
Hanemann, T.; Szabó, D. V. Polymer-nanoparticle composites: From synthesis to modern applications. Materials 2010, 3, 3468–3517.
Dang, Z. M.; Yuan, J. K.; Zha, J. W.; Zhou, T.; Li, S. T.; Hu, G. H. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 2012, 57, 660–723.
Otaegui, J. R.; Ruiz-Molina, D.; Hernando, J.; Roscini, C. Multistimuli-responsive smart windows based on paraffin-polymer composites. Chem. Eng. J. 2023, 463, 142390.
Chen, L.; Si, L. P.; Wu, F.; Chan, S. Y.; Yu, P. Y.; Fei, B. Electrical and mechanical self-healing membrane using gold nanoparticles as localized “nano-heaters”. J. Mater. Chem. C 2016, 4, 10018–10025.
Cho, Y. J.; Kong, L. C.; Islam, R.; Nie, M. T.; Zhou, W.; Lu, K. Photothermal self-healing of gold nanoparticle-polystyrene hybrids. Nanoscale 2020, 12, 20726–20736.
Yang, Y.; He, J. L.; Li, Q.; Gao, L.; Hu, J.; Zeng, R.; Qin, J.; Wang, S. X.; Wang, Q. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat. Nanotechnol. 2019, 14, 151–155.
Yang, Y.; Yang, M. H.; Zhang, S. M.; Lin, X.; Dang, Z. M.; Wang, D. R. Photoinduced healing of polyolefin dielectrics enabled by surface plasmon resonance of gold nanoparticles. J. Appl. Polym. Sci. 2019, 136, 47158–47167.
Prezgot, D.; Bottomley, A.; Jorgenson, E.; Ianoul, A. Thermoplasmonic patterning of silver nanocrystal/polymer composite thin films. Adv. Mater. Interface. 2021, 8, 2100738.
Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iatì, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys.: Condens. Matter 2017, 29, 203002.
Cao, Z. X.; Wang, R. G.; Yang, F.; Hao, L. F.; Jiao, W. C.; Liu, W. B.; Wang, Q.; Zhang, B. Y. Photothermal healing of a glass fiber reinforced composite interface by gold nanoparticles. RSC Adv. 2015, 5, 102167–102172.
Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.
Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30–38.
Peng, P.; Zhang, B. Y.; Cao, Z. X.; Hao, L. F.; Yang, F.; Jiao, W. C.; Liu, W. B.; Wang, R. G. Photothermally induced scratch healing effects of thermoplastic nanocomposites with gold nanoparticles. Compos. Sci. Technol. 2016, 133, 165–172.
Hashimoto, S.; Werner, D.; Uwada, T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13, 28–54.
Su, Q.; King, S.; Li, L. Y.; Wang, T. Y.; Gigax, J.; Shao, L.; Lanford, W. A.; Nastasi, M. Microstructure-mechanical properties correlation in irradiated amorphous SiOC. Scr. Mater. 2018, 146, 316–320.
Halas, N. J.; Lal, S.; Link, S.; Chang, W. S.; Natelson, D.; Hafner, J. H.; Nordlander, P. A Plethora of plasmonics from the Laboratory for nanophotonics at rice university. Adv. Mater. 2012, 24, 4842–4877.
Sharma, A.; Mukhopadhyay, T.; Rangappa, S. M.; Siengchin, S.; Kushvaha, V. Advances in computational intelligence of polymer composite materials: Machine learning assisted modeling, analysis and design. Arch. Comput. Methods Eng. 2022, 29, 3341–3385.
Shin, D.; Yamamoto, Y.; Brady, M. P.; Lee, S.; Haynes, J. A. Modern data analytics approach to predict creep of high-temperature alloys. Acta Mater. 2019, 168, 321–330.
Cho, Y. J.; Lu, K. A materials informatics approach for composition and property prediction of polymer-derived silicon oxycarbides. Mater. Today Adv. 2023, 18, 100384.
Chong, X. Y.; Shang, S. L.; Krajewski, A. M.; Shimanek, J. D.; Du, W. H.; Wang, Y.; Feng, J.; Shin, D.; Beese, A. M.; Liu, Z. K. Correlation analysis of materials properties by machine learning: Illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys. J. Phys.: Condens. Matter 2021, 33, 295702.
Yi, Y.; Wang, L. M.; Chen, Z. Y. Adaptive global kernel interval SVR-based machine learning for accelerated dielectric constant prediction of polymer-based dielectric energy storage. Renew. Energy 2021, 176, 81–88.
Shayeganfar, F.; Shahsavari, R. Deep learning method to accelerate discovery of hybrid polymer-graphene composites. Sci. Rep. 2021, 11, 15111.
Fiedler, L.; Shah, K.; Bussmann, M.; Cangi, A. Deep dive into machine learning density functional theory for materials science and chemistry. Phys. Rev. Mater. 2022, 6, 040301.
Jin, K.; Luo, H.; Wang, Z. Y.; Wang, H.; Tao, J. Composition optimization of a high-performance epoxy resin based on molecular dynamics and machine learning. Mater. Des. 2020, 194, 108932.
Ma, R. M.; Zhang, H. F.; Xu, J. X.; Sun, L. N.; Hayashi, Y.; Yoshida, R.; Shiomi, J.; Wang, J. X.; Luo, T. F. Machine learning-assisted exploration of thermally conductive polymers based on high-throughput molecular dynamics simulations. Mater. Today Phys. 2022, 28, 100850.
Li, H. X.; Tian, H.; Chen, Y. W.; Xiao, S. A.; Zhao, X. Y.; Gao, Y. Y.; Zhang, L. Q. Analyzing and predicting the viscosity of polymer nanocomposites in the conditions of temperature, shear rate, and nanoparticle loading with molecular dynamics simulations and machine learning. J. Phys. Chem. B 2023, 127, 3596–3605.
Zeng, Z. C.; Wang, H.; Johns, P.; Hartland, G. V.; Schultz, Z. D. Photothermal microscopy of coupled nanostructures and the impact of nanoscale heating in surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2017, 121, 11623–11631.
Yanagiya, S. I.; Sekimoto, N.; Furube, A. Photothermal dynamics of micro-glass beads coated with gold nanoparticles in water: Fine bubble generation and fluid-induced laser trapping. Jpn. J. Appl. Phys. 2018, 57, 115001.
Palermo, G.; Cataldi, U.; Condello, A.; Caputo, R.; Bürgi, T.; Umeton, C.; De Luca, A. Flexible thermo-plasmonics: An opto-mechanical control of the heat generated at the nanoscale. Nanoscale 2018, 10, 16556–16561.
Hasegawa, M.; Watanabe, K.; Namigata, H.; Welling, T. A. J.; Suga, K.; Nagao, D. Surface lattice resonance in three-dimensional plasmonic arrays fabricated via self-assembly of silica-coated gold nanoparticles. J. Colloid Interface Sci. 2023, 633, 226–232.
Jain, P. K.; El-Sayed, M. A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010, 487, 153–164.
Reshef, D. N.; Reshef, Y. A.; Finucane, H. K.; Grossman, S. R.; McVean, G.; Turnbaugh, P. J.; Lander, E. S.; Mitzenmacher, M.; Sabeti, P. C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.
Abyaneh, M. K.; Paramanik, D.; Varma, S.; Gosavi, S. W.; Kulkarni, S. K. Formation of gold nanoparticles in polymethylmethacrylate by UV irradiation. J. Phys. D: Appl. Phys. 2007, 40, 3771–3779.
Nadal, E.; Barros, N.; Peres, L.; Goetz, V.; Respaud, M.; Soulantica, K.; Kachachi, H. In situ synthesis of gold nanoparticles in polymer films under concentrated sunlight: Control of nanoparticle size and shape with solar flux. React. Chem. Eng. 2020, 5, 330–341.
Dunklin, J. R.; Forcherio, G. T.; Berry, K. R.; Roper, D. K. Asymmetric reduction of gold nanoparticles into thermoplasmonic polydimethylsiloxane thin films. ACS Appl. Mater. Interfaces 2013, 5, 8457–8466.
Hong, J.; Hwang, D. K.; Park, C.; Kim, Y. Photothermal performance of plasmonic patch with gold nanoparticles embedded on polymer matrix. Korean J. Chem. Eng. 2019, 36, 1746–1751.
Janovák, L.; Dékány, I. Optical properties and electric conductivity of gold nanoparticle-containing, hydrogel-based thin layer composite films obtained by photopolymerization. Appl. Surf. Sci. 2010, 256, 2809–2817.
Sheeney-Haj-Ichia, L.; Sharabi, G.; Willner, I. Control of the electronic properties of thermosensitive poly( N-isopropylacrylamide) and Au-nano-particle/poly( N-isopropylacrylamide) composite hydrogels upon phase transition. Adv. Funct. Mater. 2002, 12, 27–32.
Abargues, R.; Abderrafi, K.; Pedrueza, E.; Gradess, R.; Marques-Hueso, J.; Valdés, J. L.; Martínez-Pastor, J. Optical properties of different polymer thin films containing in situ synthesized Ag and Au nanoparticles. New J. Chem. 2009, 33, 1720–1725.
Berry, K. R. Jr. ; Russell, A. G.; Blake, P. A.; Roper, D. K. Gold nanoparticles reduced in situ and dispersed in polymer thin films: Optical and thermal properties. Nanotechnology 2012, 23, 375703.
Jiang, K.; Smith, D. A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J Phys. Chem. C 2013, 117, 27073–27080.
Maity, S.; Bochinski, J. R.; Clarke, L. I. Metal nanoparticles acting as light-activated heating elements within composite materials. Adv. Funct. Mater. 2012, 22, 5259–5270.
Grosges, T.; Barchiesi, D. Gold nanoparticles as a photothermal agent in cancer therapy: The thermal ablation characteristic length. Molecules 2018, 23, 1316.
Aibara, I.; Mukai, S.; Hashimoto, S. Plasmonic-heating-induced nanoscale phase separation of free poly( N-isopropylacrylamide) molecules. J. Phys. Chem. C 2016, 120, 17745–17752.
Setoura, K.; Okada, Y.; Werner, D.; Hashimoto, S. Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano 2013, 7, 7874–7885.
Enders, M.; Mukai, S.; Uwada, T.; Hashimoto, S. Plasmonic nanofabrication through optical heating. J. Phys. Chem. C 2016, 120, 6723–6732.
Davletshin, Y. R.; Kumaradas, J. C. The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures. Beilstein J. Nanotechnol. 2016, 7, 869–880.
416
Views
68
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).