AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Boosted electrosynthesis of hydrogen peroxide on isolated metal sites through second-shell modulation

Hua Zhang1Nan Zhang2Baojuan Xi1Fei Wan1Kepeng Song1Xuguang An3Shenglin Xiong1Xiaogang Li1 ( )
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
Show Author Information

Graphical Abstract

The electrosynthesis of H2O2 is boosted on phosphorus-modulated isolated Ni-N4 sites. The P atom in the second coordination shell around Ni-N4 sites triggers the tunable adsorption of OOH* and thus favors the electrocatalytic 2e oxygen reduction reaction. The constructed NiN4-P sites on carbon matrix achieve the high selectivity above 90% under the current density of 150 mA·cm−2 for H2O2 generation.

Abstract

The electrosynthesis of hydrogen peroxide is limited by the competitive four-electron oxygen reduction reaction (ORR) pathway. The modulation for the adsorption of OOH* intermediate on active sites is considered as the effective approach to tune the ORR selectivity, but it remains challenging. Herein, we report the neighboring phosphorus atom in the second coordination shell to regulate the electronic structure of the isolated Ni-N4 sites, leading to the favored OOH* adsorption and thus boosting the electrocatalytic ORR to hydrogen peroxide through the two-electron pathway. Spectroscopy characterizations and density functional theory calculations indicate the neighboring phosphorus atom in the second coordination shell triggers the electron transfer to central Ni atom, strengthening the adsorption of OOH* on Ni sites and thus increasing the catalytic performance for two-electron ORR, delivering a selectivity above 90% for production of hydrogen peroxide under the current density of 150 mA·cm−2. This work reveals tailoring second coordination shell of isolated metal sites could be as a precise and efficient way to engineer the catalytic performance, which thus provides a promising approach to the design of advanced catalysts.

Electronic Supplementary Material

Download File(s)
7211_ESM.pdf (3.5 MB)

References

[1]

Wang, M. J.; Dong, X.; Meng, Z. D.; Hu, Z. W.; Lin, Y. G.; Peng, C. K.; Wang, H. S.; Pao, C. W.; Ding, S. Y.; Li, Y. Y. et al. An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2021, 60, 11190–11195.

[2]

Chen, H.; He, C. H.; Niu, H. T.; Xia, C. F.; Li, F. M.; Zhao, W. S.; Song, F.; Yao, T.; Chen, Y.; Su, Y. Q. et al. Surface redox chemistry regulates the reaction microenvironment for efficient hydrogen peroxide generation. J. Am. Chem. Soc. 2024, 146, 15356–15365.

[3]

Fan, W. J.; Duan, Z. Y.; Liu, W.; Mehmood, R.; Qu, J. T.; Cao, Y. C.; Guo, X. Y.; Zhong, J.; Zhang, F. X. Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nat. Commun. 2023, 14, 1426.

[4]

Qi, D. F.; Xu, J.; Zhou, Y. T.; Zhang, H.; Shi, J. Q.; He, K.; Yuan, Y. F.; Luo, J.; Wang, S.; Wang, Y. Cyclodextrin-supported Co(OH)2 clusters as electrocatalysts for efficient and selective H2O2 synthesis. Angew. Chem., Int. Ed. 2023, 62, e202307355.

[5]

Xu, S. R.; Yu, Y.; Zhang, X. Y.; Xue, D. P.; Wei, Y. F.; Xia, H. C.; Zhang, F. X.; Zhang, J. N. Enhanced electron delocalization induced by ferromagnetic sulfur doped C3N4 triggers selective H2O2 production. Angew. Chem., Int. Ed. 2024, 63, e202407578.

[6]

Li, X. G.; Xu, W. J.; Le, L. Q.; Chen, S. M.; Song, L.; Choksi, T. S.; Wang, X. Sulfur-modulated isolated NiN x sites toward electrocatalytic hydrogen peroxide generation. Chem Catal. 2023, 3, 100724.

[7]

Zhang, X. L.; Su, X. Z.; Zheng, Y. R.; Hu, S. J.; Shi, L.; Gao, F. Y.; Yang, P. P.; Niu, Z. Z.; Wu, Z. Z.; Qin, S. et al. Strongly coupled cobalt diselenide monolayers for selective electrocatalytic oxygen reduction to H2O2 under acidic conditions. Angew. Chem., Int. Ed. 2021, 60, 26922–26931.

[8]

Xia, C.; Kim, J. Y. Wang, H. T. Recommended practice to report selectivity in electrochemical synthesis of H2O2. Nat. Catal. 2020, 3, 605–607.

[9]

Liu, L. X.; Kang, L. Q.; Feng, J. R.; Hopkinson, D. G.; Allen, C. S.; Tan, Y. S.; Gu, H.; Mikulska, I.; Celorrio, V.; Gianolio, D. et al. Atomically dispersed asymmetric cobalt electrocatalyst for efficient hydrogen peroxide production in neutral media. Nat. Commun. 2024, 15, 4079.

[10]

Wei, G. Y.; Li, Y. X.; Liu, X. P.; Huang, J. R.; Liu, M. R.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Single-atom zinc sites with synergetic multiple coordination shells for electrochemical H2O2 production. Angew. Chem., Int. Ed. 2023, 62, e202313914.

[11]

Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

[12]

Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Adhikari, S.; Lu, C.; Ma, X.; Dun, C. C.; Jiang, L.; Carroll, D. L. et al. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 2020, 11, 3928.

[13]

Wu, K. H.; Wang, D.; Lu, X. Y.; Zhang, X. F.; Xie, Z. L.; Liu, Y. F.; Su, B. J.; Chen, J. M.; Su, D. S.; Qi, W. et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants. Chem 2020, 6, 1443–1458.

[14]

Zhang, Y.; Lyu, Z.; Chen, Z. T.; Zhu, S. Q.; Shi, Y. F.; Chen, R. H.; Xie, M. H.; Yao, Y.; Chi, M. F.; Shao, M. H. et al. Maximizing the catalytic performance of Pd@AuxPd1− x nanocubes in H2O2 production by reducing shell thickness to increase compositional stability. Angew. Chem., Int. Ed. 2021, 60, 19643–19647.

[15]

Zhuang, Z. W.; Huang, A. J.; Tan, X.; Sun, K. A.; Chen, C.; Peng, Q.; Zhuang, Z. B.; Han, T.; Xiao, H.; Zeng, Y. et al. p-Block-metal bismuth-based electrocatalysts featuring tunable selectivity for high-performance oxygen reduction reaction. Joule 2023, 7, 1003–1015.

[16]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[17]

Li, X. G.; Tang, S. S.; Dou, S.; Fan, H. J.; Choksi, T. S.; Wang, X. Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater. 2022, 34, 2104891.

[18]

Liu, S. W.; Li, C. Z.; Zachman, M. J.; Zeng, Y. C.; Yu, H. R.; Li, B. Y.; Wang, M. Y.; Braaten, J.; Liu, J. W.; Meyer, H. M. et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 2022, 7, 652–663.

[19]

Sun, J. Q.; Tao, L.; Ye, C. L.; Wang, Y.; Meng, G.; Lei, H. Y.; Zheng, S. K.; Xing, C.; Tao, X.; Wu, P. F. et al. MOF-derived Ru1Zr1/Co dual-atomic-site catalyst with promoted performance for Fischer-Tropsch synthesis. J. Am. Chem. Soc. 2023, 145, 7113–7122.

[20]
Zhao, J.; Guo, Y.; Zhang, Z. Q.; Zhang, X. L.; Ji, Q. Q.; Zhang, H.; Song, Z. Q.; Liu, D. Q.; Zeng, J. R.; Chuang, C. H. et al. Out-of-plane coordination of iridium single atoms with organic molecules and cobalt-iron hydroxides to boost oxygen evolution reaction. Nat. Nanotechnol., in press, DOI: 10.1038/s41565-024-01807-x.
[21]

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

[22]

Najam, T.; Shah, S. S. A.; Yin, H. Q.; Xiao, X.; Talib, S.; Ji, Q. Q.; Deng, Y. G.; Javed, M. S.; Hu, J.; Zhao, R. et al. Second-shell modulation on porphyrin-like Pt single atom catalysts for boosting oxygen reduction reaction. Chem. Sci. 2024, 15, 18513–18523.

[23]

Najam, T.; Shah, S. S. A.; Javed, M. S.; Chen, P. T.; Chuang, C.; Saad, A.; Song, Z. Q.; Liu, Wei.; Cai, X. K. Modulating the electronic structure of zinc single atom catalyst by P/N coordination and Co2P supports for efficient oxygen reduction in Zn-air battery. Chem. Eng. J. 2022, 440, 135928.

[24]

Najam, T.; Shah, S. S. A.; Ibraheem, S.; Cai, X. K.; Hussain, E.; Suleman, S.; Javed, M. S.; Tsiakaras, P. Single-atom catalysis for zinc-air/O2 batteries, water electrolyzers and fuel cells applications. Energy Storage Mater. 2022, 45, 504–540.

[25]

Miao, K. H.; Qin, J. D.; Yang, J.; Kang, X. W. Synergy of Ni nanoclusters and single atom site: Size effect on the performance of electrochemical CO2 reduction reaction and rechargeable Zn–CO2 batteries. Adv. Funct. Mater. 2024, 34, 2316824.

[26]
Miao, K. H.; Qin, J. D.; Lai, S. Y.; Luo, M.; Kuchkaev, A.; Yakhvarov, D.; Kang, X. W. Spin regulation of nickel single atom catalyst via axial phosphor-coordination achieves near unity CO selectivity in electrochemical CO2 reduction. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202419989.
[27]

Zhao, C. X.; Liu, J. N.; Yao, N.; Wang, J.; Ren, D.; Chen, X.; Li, B. Q.; Zhang, Q. Can aqueous zinc-air batteries work at sub-zero temperatures. Angew. Chem., Int. Ed. 2021, 60, 15281–15285.

[28]

Sun, Z. Y.; Li, C.; Wei, Z. H.; Zhang, F.; Deng, Z. W.; Zhou, K. J.; Wang, Y.; Guo, J. H.; Yang, J. Y.; Xiang, Z. Q. et al. Sulfur-bridged asymmetric cuni bimetallic atom sites for CO2 reduction with high efficiency. Adv. Mater. 2024, 36, 2404665.

[29]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[30]

Chen, S. Y.; Luo, T.; Li, X. Q.; Chen, K. J.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. M.; Chen, Y. et al. Identification of the highly active Co–N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 2022, 144, 14505–14516.

[31]

Li, Y.; Chen, J. X.; Ji, Y. X.; Zhao, Z. L.; Cui, W. J.; Sang, X. H.; Cheng, Y.; Yang, B.; Li, Z. J.; Zhang, Q. H. et al. Single-atom iron catalyst with biomimetic active center to accelerate proton spillover for medical-level electrosynthesis of H2O2 disinfectant. Angew. Chem., Int. Ed. 2023, 62, e202306491.

[32]

Miao, K. H.; Wen, J. B.; Luo, M.; Xiang, D.; Jiang, Y. W.; Duan, D. L.; Jiang, Z.; Sun, W. M.; Mei, B. B.; Xiong, Y. J. et al. Phosphorus coordination in second shell of single-atom Cu catalyst toward acetate production in CO electroreduction. Nano Lett. 2024, 24, 12849–12856.

[33]

Li, Y. Q.; Luo, X.; Wei, Z. H.; Zhang, F.; Sun, Z. Y.; Deng, Z. W.; Zhan, Z. H.; Zhao, C. F.; Sun, Q.; Zhang, L. et al. Precisely constructing charge-asymmetric dual-atom Fe sites supported on hollow porous carbon spheres for efficient oxygen reduction. Energy Environ. Sci. 2024, 17, 4646–4657.

[34]

Hou, M. Y.; Zheng, L. R.; Zhao, D.; Tan, X.; Feng, W. Y.; Fu, J. T.; Wei, T. X.; Cao, M. H.; Zhang, J. T.; Chen, C. Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting. Nat. Commun. 2024, 15, 1342.

[35]

Li, J. C.; Li, M.; An, N.; Zhang, S.; Song, Q. N.; Yang, Y. L.; Li, J.; Liu, X. Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proc. Natl. Acad. Sci. USA 2022, 119, e2123450119.

[36]

Kamiya, K.; Kamai, R.; Hashimoto, K.; Nakanishi, S. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nat. Commun. 2014, 5, 5040.

[37]

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

[38]

Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020, 6, 658–674.

[39]

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W. F.; Higgins, D.; Sinclair, R. et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain. Chem. Eng. 2018, 6, 311–317.

[40]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[41]

Cao, P. K.; Quan, X.; Nie, X. W.; Zhao, K.; Liu, Y. M.; Chen, S.; Yu, H. T.; Chen, J. G. Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 2023, 14, 172.

[42]

Du, J. N.; Han, G. K.; Zhang, W.; Li, L. F.; Yan, Y. Q.; Shi, Y. X.; Zhang, X.; Geng, L.; Wang, Z. J.; Xiong, Y. P. et al. CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid. Nat. Commun. 2023, 14, 4766.

[43]

Dai, Y. K.; Liu, B.; Zhang, Z. Y.; Guo, P.; Liu, C.; Zhang, Y. L.; Zhao, L.; Wang, Z. B. Tailoring the d-orbital splitting manner of single atomic sites for enhanced oxygen reduction. Adv. Mater. 2023, 35, 2210757.

Nano Research
Article number: 94907211
Cite this article:
Zhang H, Zhang N, Xi B, et al. Boosted electrosynthesis of hydrogen peroxide on isolated metal sites through second-shell modulation. Nano Research, 2025, 18(3): 94907211. https://doi.org/10.26599/NR.2025.94907211

645

Views

171

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 December 2024
Revised: 20 December 2024
Accepted: 23 December 2024
Published: 20 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return