Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Zero-dimensional (0D) and three-dimensional (3D) halide perovskite nanocrystals (HP-NCs), owing to their unique optoelectronic properties, are extensively studied for photocatalytic activity. However, HPs are highly sensitive to light, humidity, and other environmental factors, which accelerate their decomposition. Understanding the decomposition process is crucial for gaining insights into how to stabilize HP-NCs. Here, we investigate the radical-driven decomposition process and dynamics of the 0D Cs4PbBr6 and 3D CsPbBr3 NCs under the influence of visible light and a polar solvent by electron paramagnetic resonance (EPR) spectroscopy. Our findings indicate that light accelerates radical formation over time, making the decomposition of HP-NCs a self-sustaining process. Upon illumination of the NCs, hydroperoxyl radicals are formed first, followed by unconventional Br, Cs, and Pb-related radicals, indicating the initiation of NC decomposition. The decomposition of CsPbBr3 NCs starts after 3 min of light exposure, while Cs4PbBr6 NCs take 18 min, indicating the greater stability of the latter. Additionally, we evaluated the photocatalytic activity of the HPs toward degrading organic dyes. The 3D CsPbBr3 NCs performed as superior photocatalysts compared to their 0D Cs4PbBr6 NCs counterparts. Yet, linking the results of EPR measurements with the photocatalytic efficacy suggests that the CsPbBr3 NCs undergo degradation during the photocatalytic process, thereby serving as a sacrificial agent to enhance photocatalytic activity. The understanding derived from EPR spectroscopy in tracking radical formation and dynamics can be extended to enhance the stability and efficiency of various nanomaterials in optoelectronic and photocatalytic applications, thus contributing to advancements beyond the HP family.
Huang, H. W.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett. 2020, 5, 1107–1123.
Kim, H.; Han, J. S.; Choi, J.; Kim, S. Y.; Jang, H. W. Halide perovskites for applications beyond photovoltaics. Small Methods 2018, 2, 1700310.
Saparov, B.; Mitzi, D. B. Organic–inorganic perovskites: Structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558–4596.
Jiang, X.; Zeng, H. W.; Duan, C. Y.; Hu, Q. F.; Wu, Q. M.; Yu, Y.; Yang, X. L. One-pot synthesis of stable and functional hydrophilic CsPbBr3 perovskite quantum dots for “turn-on” fluorescence detection of Mycobacterium tuberculosis. Dalton Trans. 2022, 51, 3581–3589.
Almutlaq, J.; Yin, J.; Mohammed, O. F.; Bakr, O. M. The benefit and challenges of zero-dimensional perovskites. J. Phys. Chem. Lett. 2018, 9, 4131–4138.
De Bastiani, M.; Dursun, I.; Zhang, Y. H.; Alshankiti, B. A.; Miao, X. H.; Yin, J.; Yengel, E.; Alarousu, E.; Turedi, B.; Almutlaq, J. M. et al. Inside perovskites: Quantum luminescence from bulk Cs4PbBr6 single crystals. Chem. Mater. 2017, 29, 7108–7113.
Qin, Z. J.; Dai, S. Y.; Hadjiev, V. G.; Wang, C.; Xie, L. X.; Ni, Y. Z.; Wu, C. Z.; Yang, G.; Chen, S.; Deng, L. Z. et al. Revealing the origin of luminescence center in 0D Cs4PbBr6 perovskite. Chem. Mater. 2019, 31, 9098–9104.
Wang, L. L.; Liu, H.; Zhang, Y. H.; Mohammed, O. F. Photoluminescence origin of zero-dimensional Cs4PbBr6 perovskite. ACS Energy Lett. 2020, 5, 87–99.
Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X. W.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H. Efficient luminescence from perovskite quantum dot solids. ACS Appl. Mater. Interfaces 2015, 7, 25007–25013.
Wei, Y.; Cheng, Z. Y.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350.
De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.
Ruan, S.; Surmiak, M. A.; Ruan, Y. L.; McMeekin, D. P.; Ebendorff-Heidepriem, H.; Cheng, Y. B.; Lu, J. F.; McNeill, C. R. Light induced degradation in mixed-halide perovskites. J. Mater. Chem. C 2019, 7, 9326–9334.
Babbe, F.; Sutter-Fella, C. M. Optical absorption-based in situ characterization of halide perovskites. Adv. Energy Mater. 2020, 10, 1903587.
Nagabhushana, G. P.; Shivaramaiah, R.; Navrotsky, A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc. Natl. Acad. Sci. USA 2016, 113, 7717–7721.
Roesch, R.; Faber, T.; Von Hauff, E.; Brown, T. M.; Lira-Cantu, M.; Hoppe, H. Procedures and practices for evaluating thin-film solar cell stability. Adv. Energy Mater. 2015, 5, 1501407.
Zu, F. S.; Amsalem, P.; Salzmann, I.; Wang, R. B.; Ralaiarisoa, M.; Kowarik, S.; Duhm, S.; Koch, N. Impact of white light illumination on the electronic and chemical structures of mixed halide and single crystal perovskites. Adv. Opt. Mater. 2017, 5, 1700139.
Akbulatov, A. F.; Frolova, L. A.; Dremova, N. N.; Zhidkov, I.; Martynenko, V. M.; Tsarev, S. A.; Luchkin, S. Y.; Kurmaev, E. Z.; Aldoshin, S. M.; Stevenson, K. J. et al. Light or heat: What is killing lead halide perovskites under solar cell operation conditions. J. Phys. Chem. Lett. 2020, 11, 333–339.
Dao, Q. D., Tsuji, R., Fujii, A., Ozaki, M. Study on degradation mechanism of perovskite solar cell and their recovering effects by introducing CH3NH3I layers. Org. Electron. 2017, 4, 229–234.
Huang, S. Q.; Li, Z. C.; Wang, B.; Zhu, N. W.; Zhang, C. Y.; Kong, L.; Zhang, Q.; Shan, A. D.; Li, L. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination. ACS Appl. Mater. Interfaces 2017, 9, 7249–7258.
Tan, C. Q.; Dong, Y. J.; Shi, L.; Chen, Q.; Yang, S. W.; Liu, X. Y.; Ling, J. F.; He, X. F.; Fu, D. F. Degradation of orange II in ferrous activated peroxymonosulfate system: Efficiency, situ EPR spin trapping and degradation pathway study. J. Taiwan Inst. Chem. Eng. 2018, 83, 74–81.
Hübner, G.; Roduner, E. EPR investigation of HO/radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J. Mater. Chem. 1999, 9, 409–418.
Fang, G. D.; Zhu, C. Y.; Dionysiou, D. D.; Gao, J.; Zhou, D. M. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Bioresour. Technol. 2015, 176, 210–217.
Phaniendra, A.; Jestadi, D. B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26.
Shi, H. L.; Timmins, G.; Monske, M.; Burdick, A.; Kalyanaraman, B.; Liu, Y.; Clément, J. L.; Burchiel, S.; Liu, K. J. Evaluation of spin trapping agents and trapping conditions for detection of cell-generated reactive oxygen species. Arch. Biochem. Biophys. 2005, 437, 59–68.
Zhao, H. T.; Joseph, J.; Zhang, H.; Karoui, H.; Kalyanaraman, B. Synthesis and biochemical applications of a solid cyclic nitrone spin trap: A relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radic. Biol. Med. 2001, 31, 599–606.
Chang, J.; Taylor, R. D.; Davidson, R. A.; Sharmah, A.; Guo, T. Electron paramagnetic resonance spectroscopy investigation of radical production by gold nanoparticles in aqueous solutions under x-ray irradiation. J. Phys. Chem. A 2016, 120, 2815–2823.
Lipovsky, A.; Tzitrinovich, Z.; Friedmann, H.; Applerot, G.; Gedanken, A.; Lubart, R. EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C 2009, 113, 15997–16001.
Hernández-Alonso, M. D.; Hungrı́a, A. B.; Martı́nez-Arias, A.; Fernández-Garcı́a, M.; Coronado, J. M.; Conesa, J. C.; Soria, J. EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation. Appl. Catal. B 2004, 50, 167–175.
Immanuel, P. N.; Huang, S. J.; Taank, P.; Goldreich, A.; Prilusky, J.; Byregowda, A.; Carmieli, R.; Shalom, H.; Leybovich, A.; Zak, A. et al. Enhanced photocatalytic activity of Cs4PbBr6/WS2 hybrid nanocomposite. Adv. Energy Sustain. Res. 2024, 5, 2300193.
Cho, S.; Yun, S. H. Structure and optical properties of perovskite-embedded dual-phase microcrystals synthesized by sonochemistry. Commun. Chem. 2020, 3, 15.
Udayabhaskararao, T.; Houben, L.; Cohen, H.; Menahem, M.; Pinkas, I.; Avram, L.; Wolf, T.; Teitelboim, A.; Leskes, M.; Yaffe, O. et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 2018, 30, 84–93.
Lu, C.; Wright, M. W.; Ma, X.; Li, H.; Itanze, D. S.; Carter, J. A.; Hewitt, C. A.; Donati, G. L.; Carroll, D. L.; Lundin, P. M. et al. Cesium oleate precursor preparation for lead halide perovskite nanocrystal synthesis: The influence of excess oleic acid on achieving solubility, conversion, and reproducibility. Chem. Mater. 2019, 31, 62–67.
Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18.
Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55.
Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-erature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.
Yang, L. L.; Wang, T.; Min, Q. H.; Liu, B. T.; Liu, Z. C.; Fan, X. T.; Qiu, J. B.; Xu, X. H.; Yu, J.; Yu, X. High water resistance of monoclinic CsPbBr3 nanocrystals derived from zero-dimensional cesium lead halide perovskites. ACS Omega 2019, 4, 6084–6091.
Gao, G.; Xi, Q. Y.; Zhou, H.; Zhao, Y. X.; Wu, C. Q.; Wang, L. D.; Guo, P. R.; Xu, J. W. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038.
Ju, H. M.; Fang, T. S.; Zhou, Y.; Feng, X. B.; Song, T. H.; Lu, F.; Liu, W. C. CsPbBr3-MoS2-GO nanocomposites for boosting photocatalytic degradation performance. Appl. Surf. Sci. 2021, 551, 149452.
Seth, S.; Samanta, A. Fluorescent phase-pure zero-dimensional perovskite-related Cs4PbBr6 microdisks: Synthesis and single-particle imaging study. J. Phys. Chem. Lett. 2017, 8, 4461–4467.
Li, Y.; Chen, L.; Liu, B.; Ruan, J. L.; Liu, J. L.; Ouyang, X. P.; Xu, Q. The phosphorescence emission in undoped lead-halide Cs4PbBr6 single crystals at low temperature. Ceram. Int. 2022, 48, 16730–16736.
Yan, X. L.; Shen, Y. Y.; Liu, H. T.; Yang, X. Y. Colloidal Au–CsPbBr3 for nonlinear saturable absorption effects. J. Mater. Sci. 2020, 55, 10678–10688.
Cao, F.; Yu, D. J.; Xu, X. B.; Han, Z. Y.; Zeng, H. B. CsPbBr3@Cs4PbBr6 emitter-in-host composite: Fluorescence origin and interphase energy transfer. J. Phys. Chem. C 2021, 125, 3–19.
Gan, Z. X.; Zheng, F.; Mao, W. X.; Zhou, C. H.; Chen, W. J.; Bach, U.; Tapping, P.; Kee, T. W.; Davis, J. A.; Jia, B. H. et al. The optical properties of Cs4PbBr6-CsPbBr3 perovskite composites. Nanoscale 2019, 11, 14676–14683.
Gong, X. Q.; Hao, X. M.; Si, J. J.; Deng, Y. Z.; An, K.; Hu, Q. Q.; Cai, Q. T.; Gao, Y.; Ke, Y.; Wang, N. N. et al. High-performance all-inorganic architecture perovskite light-emitting diodes based on tens-of-nanometers-sized CsPbBr3 emitters in a carrier-confined heterostructure. ACS Nano 2023, 18, 8673–8682.
Balakrishnan, S. K.; Kamat, P. V. Ligand assisted transformation of cubic CsPbBr3 nanocrystals into two-dimensional CsPb2Br5 nanosheets. Chem. Mater. 2018, 30, 74–78.
López, R.; Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 2012, 61, 1–7.
Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D'Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010–1016.
Sun, Y. F.; Zhang, H. D.; Zhu, K.; Ye, W. G.; She, L. S.; Gao, X. M.; Ji, W. Y.; Zeng, Q. H. Research on the influence of polar solvents on CsPbBr3 perovskite QDs. RSC Adv. 2021, 11, 27333–27337.
Brennan, M. C.; Herr, J. E.; Nguyen-Beck, T. S.; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 12201–12208.
Li, J.; Wang, L.; Yuan, X.; Bo, B. X.; Li, H. B.; Zhao, J. L.; Gao, X. Ultraviolet light induced degradation of luminescence in CsPbBr3 perovskite nanocrystals. Mater. Res. Bull. 2018, 102, 86–91.
Bhardwaj, A.; Kushwaha, A. K. Effect of dispersion solutions on optical properties and stability of CsPbBr3 perovskite nanocrystals. ECS J. Solid State Sci. Technol. 2022, 11, 036002.
Kosugi, T.; Iso, Y.; Isobe, T. Effects of oleic acid on the stability of perovskite CsPbBr3 quantum dot dispersions. Chem. Lett. 2019, 48, 349–352.
Phillis, J. W.; Estevez, A. Y.; O'Regan, M. H. Protective effects of the free radical scavengers, dimethyl sulfoxide and ethanol, in cerebral ischemia in gerbils. Neurosci. Lett. 1998, 244, 109–111.
Rosenblum, W. I.; El-Sabban, F. Dimethyl sulfoxide (DMSO) and glycerol, hydroxyl radical scavengers, impair platelet aggregation within and eliminate the accompanying vasodilation of, injured mouse pial arterioles. Stroke 1982, 13, 35–39.
Zulys, A.; Adawiah, A.; Gunlazuardi, J.; Yudhi, M. D. L. Light-harvesting metal-organic frameworks (MOFs) La-PTC for photocatalytic dyes degradation. Bull. Chem. React. Eng. Catal. 2021, 16, 170–178.
Immanuel, P. N.; Huang, S. J.; Danchuk, V.; Sedova, A.; Prilusky, J.; Goldreich, A.; Shalom, H.; Musin, A.; Yadgarov, L. Improving the stability of halide perovskite solar cells using nanoparticles of tungsten disulfide. Nanomaterials 2022, 12, 4454.
Goldreich, A.; Prilusky, J.; Prasad, N.; Puravankara, A.; Yadgarov, L. Highly stable CsPbBr3@MoS2 nanostructures: Synthesis and optoelectronic properties toward implementation into solar cells. Small 2024, 20, 2404727.
Sabarinathan, M.; Harish, S.; Archana, J.; Navaneethan, M.; Ikeda, H.; Hayakawa, Y. Highly efficient visible-light photocatalytic activity of MoS2-TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv. 2017, 7, 24754–24763.
282
Views
45
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).