AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (52.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Advancing microwave absorption: Innovative strategies spanning nano-micro engineering to metamaterial design

Beibei Zhan1Xiaosi Qi1( )Jing-Liang Yang1Xiu Gong1Junfei Ding1Yanli Chen1Fuzhong Wu2Wei Zhong3
College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
Guizhou High-level Institution Key Laboratory of High-Performance Battery Materials, Guizhou University, Guiyang 550025, China
National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

Innovative strategies ranging from nano-micro engineering to metamaterial design are explored to advance microwave absorption.

Abstract

With the widespread adoption of communication technology, the potential hazards of electromagnetic (EM) radiation to human health and electronic devices operation have also emerged. Therefore, microwave absorption (MA) materials are becoming increasingly vital in the current electronic information age. Currently, extensive researches have been conducted on the MA mechanisms and optimized strategies, leading to significant advancements in improving MA performance. However, there is a lack of systematic summary of various innovative engineering strategies from nano-micro scale to metamaterial. Typically, nano-micro engineering techniques readily introduce heterointerfaces, components, or defects, etc. to boost dielectric loss and/or magnetic loss. And macroscopic strategy focuses on crafting more porous three-dimensional structures (foams, aerogels, films, etc.), which are beneficial for fine-tuning intrinsic impedance and triggering multiple reflections/scattering of EM wave (EMW). While metamaterial design featuring periodic layouts and sub-wavelength scales can also lead to energy loss via EMW resonances. Hence, in this review, we aim to provide a detailed overview of various engineering strategies for enhancing MA performance from nano-micro engineering to macroscopic strategies to metamaterial design. Furthermore, we elaborate the present challenges faced by MA technology and discuss potential future development opportunities and trends. It is our hope that this paper will offer insights and direction for the ongoing improvement of MA performance and achieving practical applications.

References

[1]

Yao, L. H.; Wang, Y. C.; Zhao, J. G.; Zhu, Y. Q.; Cao, M. S. Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 2023, 19, 2208101.

[2]

Zeng, X. J.; Zhao, C.; Jiang, X.; Yu, R. H.; Che, R. C. Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small 2023, 19, 2303393.

[3]
Lv, H. L.; Cui, J. C.; Li, B. X.; Yuan, M. Y.; Liu, J. J.; Che, R. C. Insights into civilian electromagnetic absorption materials: Challenges and innovative solutions. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202315722.
[4]

Li, L. X.; Pan, F.; Guo, H. T.; Jiang, H. J.; Wang, X.; Yao, K.; Yang, Y.; Yuan, B.; Abdalla, I.; Che, R. C. et al. Tailored magnetic spatial confinement with enhanced polarization and magnetic response for electromagnetic wave absorption. Small 2024, 20, e2402564.

[5]

Kim, S. H.; Lee, S. Y.; Zhang, Y. L.; Park, S. J.; Gu, J. W. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 2023, 10, 2303104.

[6]

Liu, T. T.; Zheng, Q.; Cao, W. Q.; Wang, Y. Z.; Zhang, M.; Zhao, Q. L.; Cao, M. S. Dielectric genes editing MXene to switch electromagnetic functions. Adv. Compos. Hybrid Mater. 2024, 7, 79.

[7]

Panahi-Sarmad, M.; Samsami, S.; Ghaffarkhah, A.; Hashemi, S. A.; Ghasemi, S.; Amini, M.; Wuttke, S.; Rojas, O.; Tam, K. C.; Jiang, F. et al. MOF-based electromagnetic shields multiscale design: Nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. 2024, 34, 2304473.

[8]

Fan, B. X.; Xing, L.; Yang, K. X.; Zhou, F. J.; He, Q. M.; Tong, G. X.; Wu, W. H. Synergistically enhanced heat conductivity-microwave absorption capabilities of g-C3N4@Fe@C hollow micro-polyhedra via interface and composition modulation. Chem. Eng. J. 2023, 451, 138492.

[9]

Gu, W. H.; Sheng, J. Q.; Huang, Q. Q.; Wang, G. H.; Chen, J. B.; Ji, G. B. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 2021, 13, 102.

[10]

Jia, Z. R.; Sun, L. F.; Gao, Z. G.; Lan, D. Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption. Nano Res. 2024, 17, 10099–10108.

[11]

Deng, H.; Liu, L. Y.; Tang, X. P.; Lu, Y. X.; Wang, X. F.; Zhao, Y. Y.; Shi, Y. G. Impact of specific electromagnetic radiation on wakefulness in mice. Proc. Natl. Acad. Sci. USA 2024, 121, e2313903121.

[12]

Srivastava, S. K.; Manna, K. Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review. J. Mater. Chem. A 2022, 10, 7431–7496.

[13]

Wu, F.; Sun, M. X.; Jiang, W. C.; Zhang, K.; Xie, A. M.; Wang, Y.; Wang, M. Y. A self-assembly method for the fabrication of a three-dimensional (3D) polypyrrole (PPy)/poly(3,4-ethylenedioxythiophene) (PEDOT) hybrid composite with excellent absorption performance against electromagnetic pollution. J. Mater. Chem. C 2016, 4, 82–88.

[14]

Serdobintsev, A. A.; Galushka, V. V.; Kozhevnikov, I. O.; Pavlov, A. M.; Starodubov, A. V. Gradient magnetron co-sputtered μm-thick Al–Si films on dielectric substrates for operation in the millimeter-wave band. Appl. Phys. Lett. 2021, 119, 161906.

[15]

Calvo-de la Rosa, J.; Bou-Comas, A.; Hernàndez, J. M.; Marín, P.; Lopez-Villegas, J. M.; Tejada, J.; Chudnovsky, E. M. New approach to designing functional materials for stealth technology: Radar experiment with bilayer absorbers and optimization of the reflection loss. Adv. Funct. Mater. 2024, 34, 2308819.

[16]

Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

[17]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[18]

Xu, J.; Zhang, X.; Zhao, Z. B.; Hu, H.; Li, B.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 2021, 17, 2102032.

[19]

Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2T x MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

[20]

Xiang, Z.; Wang, X.; Zhang, X.; Shi, Y. Y.; Cai, L.; Zhu, X. J.; Dong, Y. Y.; Lu, W. Self-assembly of nano/microstructured 2D Ti3CNT x MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon 2022, 189, 305–318.

[21]

Dey, C. C.; Sadhukhan, S.; Mitra, A.; Dalal, M.; Shaw, A.; Bajorek, A.; Chakrabarti, P. K. Magnetic energy morphing, capacitive concept for Ni0.3Zn0.4Ca0.3Fe2O4 nanoparticles embedded in graphene oxide matrix, and studies of wideband tunable microwave absorption. ACS Appl. Mater. Interfaces 2021, 13, 46967–46979.

[22]

Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

[23]

Yuan, L. Y.; Zhao, W. X.; Miao, Y. K.; Wang, C.; Cui, A. G.; Tian, Z. N.; Wang, T.; Meng, A. L.; Zhang, M.; Li, Z. J. Constructing core–shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption. Adv. Compos. Hybrid Mater. 2024, 7, 70.

[24]

Pham, P. H. Q.; Zhang, W. D.; Quach, N. V.; Li, J. F.; Zhou, W. W.; Scarmardo, D.; Brown, E. R.; Burke, P. J. Broadband impedance match to two-dimensional materials in the terahertz domain. Nat. Commun. 2017, 8, 2233.

[25]

Ren, L. G.; Wang, Y. Q.; Zhang, X.; He, Q. C.; Wu, G. L. Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres. Int. J. Miner. Metall. Mater. 2023, 30, 504–514.

[26]

He, Y. F.; Su, Q.; Liu, D. D.; Xia, L.; Huang, X. X.; Lan, D.; Liu, Y. N.; Huang, Y. D.; Zhong, B. Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 2024, 491, 152041.

[27]

Zhou, Z. H.; Zhu, Q. Q.; Liu, Y.; Zhang, Y.; Jia, Z. R.; Wu, G. L. Construction of self-assembly based tunable absorber: Lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 2023, 15, 137.

[28]

Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient x-band electromagnetic wave absorption. Nano Res. 2024, 17, 1607–1615.

[29]

Guo, Y. Y.; Zhang, M.; Cheng, T. T.; Xie, Y. X.; Zhao, L. B.; Jiang, L.; Zhao, W. X.; Yuan, L. Y.; Meng, A. L.; Zhang, J. et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 2023, 16, 9591–9601.

[30]

Cai, Y. F.; Cheng, Y.; Wang, Z. H.; Fei, G. X.; Lavorgna, M.; Xia, H. S. Facile and scalable preparation of ultralight cobalt@graphene aerogel microspheres with strong and wide bandwidth microwave absorption. Chem. Eng. J. 2023, 457, 141102.

[31]
Zhou, L.; Hu, P. F.; Bai, M.; Leng, N.; Cai, B.; Peng, H. L.; Zhao, P. Y.; Guo, Y. Q.; He, M. K.; Wang, G. S. et al. Harnessing the electronic spin states of single atoms for precise electromagnetic modulation. Adv. Mater. 2024 , DOI: 10.1002/adma.202418321.
[32]

Huang, X. G.; Yu, G. Y.; Zhang, Y. K.; Zhang, M. J.; Shao, G. F. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131894.

[33]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[34]

Su, K.; Wang, Y.; Hu, K. X.; Fang, X.; Yao, J.; Li, Q.; Yang, J. Ultralight and high-strength SiCnw@SiC foam with highly efficient microwave absorption and heat insulation properties. ACS Appl. Mater. Interfaces 2021, 13, 22017–22030.

[35]

Liu, J.; Meng, C.; Liu, Q. W.; Li, N. L.; Yu, R. H.; Zeng, M. Fire-resistant iron-based phosphates/phosphorus-doped carbon composites derived from phytic acid-treated metal organic frameworks as high-efficiency microwave absorbers. Carbon 2022, 200, 472–482.

[36]

Yan, X.; Huang, X. X.; Chen, Y. T.; Liu, Y. H.; Xia, L.; Zhang, T.; Lin, H. Y.; Jia, D. C.; Zhong, B.; Wen, G. W. et al. A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon 2021, 174, 662–672.

[37]

Zeng, X. J.; Jiang, X.; Ning, Y.; Hu, F. Y.; Fan, B. B. Construction of dual heterogeneous interface between zigzag-like Mo-MXene nanofibers and small CoNi@NC nanoparticles for electromagnetic wave absorption. J. Adv. Ceram. 2023, 12, 1562–1576.

[38]

Sun, C. H.; Lan, D.; Jia, Z. R.; Gao, Z. G.; Wu, G. L. Kirkendall effect-induced ternary heterointerfaces engineering for high polarization loss MOF-LDH-MXene absorbers. Small 2024, 20, 2405874.

[39]

Ning, M. Q.; Jiang, P. H.; Ding, W.; Zhu, X. B.; Tan, G. G.; Man, Q. K.; Li, J. B.; Li, R. W. Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 2021, 31, 2011229.

[40]

Li, Y. Y.; Qi, X. S.; Zhan, B. B.; Ding, J. F.; Qu, Y. P.; Gong, X.; Yang, J. L.; Chen, Y. L.; Peng, Q.; Zhong, W. et al. Hollow engineering and component optimization strategy to construct flower-like yolk–shell structure SiO2@void@C@WS2 multicomponent nanocomposites for microwave absorption. J. Mater. Sci. Technol. 2025, 212, 96–104.

[41]

Dong, Y. Y.; Zhu, X. J.; Pan, F.; Cai, L.; Jiang, H. J.; Cheng, J.; Shi, Z.; Xiang, Z.; Lu, W. Implanting NiCo2O4 equalizer with designable nanostructures in agaric aerogel-derived composites for efficient multiband electromagnetic wave absorption. Carbon 2022, 190, 68–79.

[42]

Li, Y.; Qing, Y. C.; Zhang, Y. R.; Xu, H. L. Simultaneously tuning structural defects and crystal phase in accordion-like Ti x O2 x –1 derived from Ti3C2T x MXene for enhanced electromagnetic attenuation. J. Adv. Ceram. 2023, 12, 1946–1960.

[43]

Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

[44]

Xiang, L. L.; Qi, X. S.; Rao, Y. C.; Wang, L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable and broadband microwave absorption. Mater. Today Phys. 2023, 34, 101030.

[45]

Zhan, B. B.; Hao, Y. L.; Qi, X. S.; Qu, Y. P.; Ding, J. F.; Yang, J. L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res. 2024, 17, 927–938.

[46]

Qian, K. P.; Li, S.; Fang, J. H.; Yang, Y. H.; Cao, S. M.; Miao, M.; Feng, X. C60 intercalating Ti3C2T x MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. J. Mater. Sci. Technol. 2022, 127, 71–77.

[47]

Jia, T. M.; Qi, X. S.; Wang, L.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption. Carbon 2023, 206, 364–374.

[48]

Huang, Q. Q.; Wang, G. H.; Zhou, M.; Zheng, J.; Tang, S. L.; Ji, G. B. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture. J. Mater. Sci. Technol. 2022, 108, 90–101.

[49]

Si, H. X.; Zhang, Y.; Liu, Y. H.; Jiang, Z. Y.; Li, C. P.; Zhang, J. W.; Huang, X. X.; Gong, C. H. Structural design in reduced graphene oxide (RGO) metacomposites for enhanced microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2025, 206, 211–220.

[50]

Zheng, W.; Liu, B.; Yang, C. H.; Zhang, A. B. Optimal design of 3D macro-structures for multi-layer foams achieving ultra-broadband microwave absorption properties and high retention after immersion in brine. Compos. Part B: Eng. 2024, 268, 111094.

[51]

Zhou, R.; Wang, Y. S.; Liu, Z. Y.; Pang, Y. Q.; Chen, J. X.; Kong, J. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 122.

[52]

Cao, Y. C.; Ye, F.; Liang, J.; Qi, L. H.; Mo, R.; Huang, B.; Cheng, L. F.; Song, Q. Structural-functional-integrated ultra-wideband microwave-absorbing composites based on in situ-grown graphene meta-nanointerface. Adv. Funct. Mater. 2024, 34, 2411271.

[53]

Shi, B.; Liang, H. S.; Xie, Z. J.; Chang, Q.; Wu, H. J. Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption. Int. J. Miner. Metall. Mater. 2023, 30, 1388–1397.

[54]

Zhu, H. H.; Liang, J.; Chen, J. F.; Chang, H.; Jiao, X. G.; Jiao, Q. Z.; Feng, C. H.; Li, H. S.; Zhang, Y. Y.; Zhao, Y. Rational construction of yolk–shell structured Co3Fe7/FeO@carbon composite and optimization of its microwave absorption. J. Colloid Interface Sci. 2022, 626, 775–786.

[55]

Zhang, Z. W.; Cai, Z. H.; Wang, Z. Y.; Peng, Y. L.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Huang, Y. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 2021, 13, 56.

[56]

Yao, L.; Qi, X. S.; Zhan, B. B.; Wang, L.; Gong, X.; Ding, J. F.; Qu, Y. P.; Yang, J. L.; Chen, Y. L.; Peng, Q. et al. A combined strategy to constructure MoX2 (X = Se and S)-based core@shell structure flower-like multicomponent nanocomposites for boosted conduction loss, polarization loss and microwave absorption capacities. Compos. Commun. 2024, 50, 102014.

[57]
Zhao, W. X.; Zhang, M.; Miao, Y. K.; Wang, C.; Cui, A. G.; Yuan, L. Y.; Miao, Z. Q.; Wang, X. Q.; Wang, Z. B.; Pang, H. Y. et al. Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption. Int. J. Miner. Metall. Mater., in press, DOI: 10.1007/s12613-024-2911-y.
[58]

Li, B.; Ma, Z. Q.; Zhang, X.; Xu, J.; Chen, Y. J.; Zhang, X. T.; Zhu, C. L. NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption. Small 2023, 19, e2207197.

[59]

Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

[60]

Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760.

[61]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[62]

Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

[63]

Liu, Y. J.; Wei, X. F.; He, X. X.; Yao, J. R.; Tan, R. Y.; Chen, P.; Yao, B. Y.; Zhou, J. T.; Yao, Z. J. Multifunctional shape memory composites for joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 2023, 33, 2211352.

[64]

Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

[65]

Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 47.

[66]

Li, Q. Q.; Zhao, Y. H.; Li, X. H.; Wang, L.; Li, X.; Zhang, J.; Che, R. C. MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small 2020, 16, 2003905.

[67]

Chen, C.; Xi, J. B.; Zhou, E. Z.; Peng, L.; Chen, Z. C.; Gao, C. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 2018, 10, 26.

[68]

Zhou, X. J.; Wen, J. W.; Wang, Z. N.; Ma, X. H.; Wu, H. J. Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber. J. Colloid Interface Sci. 2021, 602, 834–845.

[69]

Cheng, J. B.; Zhao, H. B.; Zhang, A. N.; Wang, Y. Q.; Wang, Y. Z. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 266–274.

[70]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[71]

Xu, J.; Shu, R. W.; Wan, Z. L.; Shi, J. J. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 132, 193–200.

[72]

Cheng, J. Y.; Zhang, H. B.; Ning, M. Q.; Raza, H.; Zhang, D. Q.; Zheng, G. P.; Zheng, Q. B.; Che, R. C. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy. Adv. Funct. Mater. 2022, 32, 2200123.

[73]

Zhang, G. Z.; Wang, J. L.; Xie, Y.; Shao, Y.; Ling, Y.; Chen, Y.; Zhang, Y. F. CoS2 particles loaded on MOF-derived hollow carbon spheres with enhanced overall water splitting. Electrochim. Acta 2023, 458, 142511.

[74]

Li, Z. S.; Li, B. L.; Yu, C. L.; Wang, H. Q.; Li, Q. Y. Recent progress of hollow carbon nanocages: General design fundamentals and diversified electrochemical applications. Adv. Sci. 2023, 10, 2206605.

[75]

Sun, X.; He, G. H.; Xiong, C. X.; Wang, C. Y.; Lian, X.; Hu, L. F.; Li, Z. K.; Dalgarno, S. J.; Yang, Y. W.; Tian, J. One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy. ACS Appl. Mater. Interfaces 2021, 13, 3679–3693.

[76]

Gao, S. T.; Zhang, Y. C.; He, J.; Zhang, X. Z.; Jiao, F. C.; Liu, T.; Li, H. X.; Wu, C. L.; Ma, M. L. Coal gasification fine slag residual carbon decorated with hollow-spherical Fe3O4 nanoparticles for microwave absorption. Ceram. Int. 2023, 49, 17554–17565.

[77]

Cai, L.; Pan, F.; Zhu, X. J.; Dong, Y. Y.; Shi, Y. Y.; Xiang, Z.; Cheng, J.; Jiang, H. J.; Shi, Z.; Lu, W. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 2022, 434, 133865.

[78]

Lv, H. L.; Ji, G. B.; Liu, W.; Zhang, H. Q.; Du, Y. W. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 2015, 3, 10232–10241.

[79]

Yu, Y. L.; Wang, M.; Bai, Y. Q.; Zhang, B.; An, L. L.; Zhang, J. Y.; Zhong, B. Tuning the inner hollow structure of lightweight amorphous carbon for enhanced microwave absorption. Chem. Eng. J. 2019, 375, 121914.

[80]

Wu, H.; Tian, R. J.; Huang, F. Z.; Wang, B. J.; Wang, S. P.; Li, S. K.; Liu, F. H.; Zhang, H. Constructing ohmic contact on hollow carbon nanocages to enhance conduction loss enabling high-efficient microwave absorption. Carbon 2022, 196, 552–561.

[81]

Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 2021, 8, 2004640.

[82]

Wang, Y. Q.; Ding, R.; Zhang, Y. C.; Liu, B. W.; Fu, Q.; Zhao, H. B.; Wang, Y. Z. Gradient hierarchical hollow heterostructures of Ti3C2T x @rGO@MoS2 for efficient microwave absorption. ACS Appl. Mater. Interfaces 2023, 15, 32803–32813.

[83]

Song, P.; Cai, Z. H.; Li, J. J.; He, M. K.; Qiu, H.; Ren, F.; Zhang, Y. L.; Guo, H.; Ren, P. G. Construction of rGO-MXene@FeNi/epoxy composites with regular honeycomb structures for high-efficiency electromagnetic interference shielding. J. Mater. Sci. Technol. 2025, 217, 311–320.

[84]
Liu, A.; Qiu, H.; Lu, X. H.; Guo, H.; Hu, J. W.; Liang, C. B.; He, M. K.; Yu, Z.; Zhang, Y. L.; Kong, J. et al. Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater., in press, DOI: 10.1002/adma.202414085.
[85]

Zhang, Y. L.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 2023, 4, 2300224.

[86]

Zhang, C.; Wu, Z. C.; Xu, C. Y.; Yang, B. T.; Wang, L.; You, W. B.; Che, R. C. Hierarchical Ti3C2T x MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 2022, 18, 2104380.

[87]

Ye, Y. X.; Yin, Y. Q.; Chen, Y.; Li, S.; Li, L.; Yamauchi, Y. Metal-organic framework materials in perovskite solar cells: Recent advancements and perspectives. Small 2023, 19, 2208119.

[88]

Gao, Z. G.; Yang, K.; Zhao, Z. H.; Lan, D.; Zhou, Q.; Zhang, J. Q.; Wu, H. J. Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective. Int. J. Miner. Metall. Mater. 2023, 30, 405–427.

[89]

Wu, Z. M.; Huang, J.; Zeng, X. J. Dual magnetic particles modified carbon nanosheets in CoFe/Co@NC heterostructure for efficient electromagnetic synergy. Soft Sci. 2024, 4, 42.

[90]

Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

[91]

Zhou, Z. H.; Zhou, X. F.; Lan, D.; Zhang, Y.; Jia, Z. R.; Wu, G. L.; Yin, P. F. Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection. Small 2024, 20, 2305849.

[92]

Gai, L. X.; Wang, Y. H.; Wan, P.; Yu, S. P.; Chen, Y. Z.; Han, X. J.; Xu, P.; Du, Y. C. Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 2024, 16, 167.

[93]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

[94]

Xiao, J. X.; Qi, X. S.; Wang, L.; Jing, T.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Anion regulating endows core@shell structured hollow carbon spheres@MoS x Se2– x with tunable and boosted microwave absorption performance. Nano Res. 2023, 16, 5756–5766.

[95]
Xiao, J. X.; Zhan, B. B.; He, M. K.; Qi, X. S.; Gong, X.; Yang, J. L.; Qu, Y. P.; Ding, J. F.; Zhong, W.; Gu, J. W. Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316722.
[96]

Zhang, Y.; Wang, S. Q.; Yang, Y. X.; Zhao, S.; You, J. H.; Wang, J. X.; Cai, J. W.; Wang, H.; Wang, J.; Zhang, W. et al. Scarless wound healing programmed by core–shell microneedles. Nat. Commun. 2023, 14, 3431.

[97]

Su, H. Y.; Tian, Q.; Hurd Price, C. A.; Xu, L.; Qian, K.; Liu, J. Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis. Nano Today 2020, 31, 100834.

[98]

Zhi, D. D.; Li, T.; Qi, Z. H.; Li, J. Z.; Tian, Y. R.; Deng, W. T.; Meng, F. B. Core–shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496.

[99]

Chen, C. X.; Xie, G. Z.; Dai, J.; Li, W. X.; Cai, Y. L.; Li, J.; Zhang, Q. P.; Tai, H. L.; Jiang, Y. D.; Su, Y. J. Integrated core–shell structured smart textiles for active NO2 concentration and pressure monitoring. Nano Energy 2023, 116, 108788.

[100]

Vijayapradeep, S.; Logeshwaran, N.; Ramakrishnan, S.; Kim, A. R.; Sampath, P.; Kim, D. H.; Yoo, D. J. Novel Pt–carbon core–shell decorated hierarchical CoMo2S4 as efficient electrocatalysts for alkaline/seawater hydrogen evolution reaction. Chem. Eng. J. 2023, 473, 145348.

[101]

Rao, L. J.; Li, Z. L.; Qian, Y. T.; Huang, M. Q.; Wang, L.; Liu, Y. S.; Zhang, J. C.; Lai, Y. X.; Liang, C. Y.; Che, R. C. Heterointerface engineering in porous microspheres for magnetic–dielectric balance to boost electromagnetic wave absorption. Chem. Eng. J. 2024, 488, 150955.

[102]

Xue, Y.; Liu, X. Y.; Lu, X. Y. Hierarchically three-dimensional ZrO2/Fe3O4/C nanocomposites with janus structure for high-efficiency electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 195, 126–135.

[103]

Jia, T. M.; Hao, Y. L.; Qi, X. S.; Rao, Y. C.; Wang, L.; Ding, J. F.; Qu, Y. P.; Zhong, W. Interface engineering and impedance matching strategy to develop core@shell urchin-like NiO/Ni@carbon nanotubes nanocomposites for microwave absorption. J. Mater. Sci. Technol. 2024, 176, 1–12.

[104]

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

[105]

Zhang, H. X.; Sun, K. G.; Sun, K. K.; Chen, L.; Wu, G. L. Core–shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 158, 242–252.

[106]

Wang, Y.; Di, X. C.; Chen, J.; She, L. N.; Pan, H. G.; Zhao, B.; Che, R. C. Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon 2022, 191, 625–635.

[107]

Yang, W. T.; Sun, J. W.; Liu, D. Y.; Fu, W. W.; Dong, Y. B.; Fu, Y. Q.; Zhu, Y. F. Rational design of hierarchical structure of carbon@polyaniline composite with enhanced microwave absorption properties. Carbon 2022, 194, 114–126.

[108]

Zheng, C. L.; Ning, M. Q.; Zou, Z.; Lv, G. G.; Wu, Q.; Hou, J. H.; Man, Q. K.; Li, R. W. Two birds with one stone: Broadband electromagnetic wave absorption and anticorrosion performance in 2–18 GHz for Prussian blue analog derivatives aimed for practical applications. Small 2023, 19, 2208211.

[109]

Li, G. Q.; Liu, S. H.; Xu, Z. W.; Guo, J. H.; Tang, S. Y.; Ma, X. Recent advancements in liquid metal enabled flexible and wearable biosensors. Soft Sci. 2023, 3, 37.

[110]

Zhao, B.; Du, Y. Q.; Lv, H. L.; Yan, Z. K.; Jian, H.; Chen, G. Y.; Wu, Y. Y.; Fan, B. B.; Zhang, J. C.; Wu, L. M. et al. Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. 2023, 33, 2302172.

[111]

Zhao, B.; Yan, Z. K.; Liu, L. L.; Zhang, Y. Y.; Guan, L.; Guo, X. Q.; Li, R. S.; Che, R. C.; Zhang, R. A liquid-metal-assisted competitive galvanic reaction strategy toward indium/oxide core–shell nanoparticles with enhanced microwave absorption. Adv. Funct. Mater. 2024, 34, 2314008.

[112]

Wu, Z.; Tan, X. L.; Wang, J. Q.; Xing, Y. Q.; Huang, P.; Li, B. J.; Liu, L. MXene hollow spheres supported by a C–Co exoskeleton grow MWCNTs for efficient microwave absorption. Nano-Micro Lett. 2024, 16, 107.

[113]

Li, C.; Liang, L. L.; Yang, Y.; Zhang, B. S.; Ji, G. B. Interfacial engineering of core–shell structured FeCoNi@SnO2 magnetic composites for tunable radar-infrared compatible stealth. Chem. Eng. J. 2024, 481, 148354.

[114]

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

[115]

Feng, A. L.; Lan, D.; Liu, J. K.; Wu, G. L.; Jia, Z. R. Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance. J. Mater. Sci. Technol. 2024, 180, 1–11.

[116]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[117]

Xiang, L. L.; Darboe, A. K.; Luo, Z. H.; Qi, X. S.; Shao, J. J.; Ye, X. J.; Liu, C. S.; Sun, K.; Qu, Y. P.; Xu, J. et al. Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der waals heterojunctions: A combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 2023, 6, 215.

[118]

Jiang, X. W.; Wang, Q.; Song, L. M.; Lu, H. X.; Xu, H. L.; Shao, G.; Wang, H. L.; Zhang, R.; Wang, C. A.; Fan, B. B. Enhancing electromagnetic wave absorption with core–shell structured SiO2@MXene@MoS2 nanospheres. Carbon Energy 2024, 6, e502.

[119]
Xiao, J. X.; Zhan, B. B.; Qi, X. S.; Ding, J. F.; Qu, Y. P.; Gong, X.; Yang, J. L.; Wang, L.; Zhong, W.; Che, R. C. Metal valence state modulation strategy to design core@shell hollow carbon microspheres@MoSe2/MoO x multicomponent composites for anti-corrosion and microwave absorption. Small, in press, DOI: 10.1002/smll.202311312.
[120]

Liu, Y. L.; Tian, C. H.; Wang, F. Y.; Hu, B.; Xu, P.; Han, X. J.; Du, Y. C. Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 2023, 461, 141867.

[121]

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk–shell design for stabilized and scalable Li-Ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.

[122]

Liu, J.; Qiao, S. Z.; Budi Hartono, S.; Lu, G. Q. Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem., Int. Ed. 2010, 49, 4981–4985.

[123]

Liu, J. W.; You, W. B.; Yu, J. Y.; Liu, X. G.; Zhang, X. F.; Guo, J. J.; Che, R. C. Electron holography of yolk–shell Fe3O4@mSiO2 microspheres for use in microwave absorption. ACS Appl. Nano Mater. 2019, 2, 910–916.

[124]

Jia, H. X.; Duan, Y. P.; Dou, C. X.; Niu, L. K.; Wu, N. B.; Wang, M. Thermally-driven contraction asymmetric yolk–shell MnSe@C microsphere with boosted dielectric behaviors and microwave absorption. J. Mater. Sci. Technol. 2024, 183, 223–231.

[125]

Fu, K.; Yao, Q. B.; Xu, L. L.; Zhou, W. Y.; Wang, Z. J.; Yang, Y. J.; Tong, G. X.; Wang, X. J.; Wu, W. H. Constructing magnetic/dielectric dual loss and phonon/electron thermal carriers γ-Al2O3-based yolk–shell microspheres to collaboratively advance microwave absorption and heat conduction. Mater. Horiz. 2024, 11, 1065–1078.

[126]

He, P.; Ma, W. J.; Xu, J.; Wang, Y. Z.; Cui, Z. K.; Wei, J.; Zuo, P. Y.; Liu, X. Y.; Zhuang, Q. X. Hierarchical and orderly surface conductive networks in yolk–shell Fe3O4@C@Co/N-doped C microspheres for enhanced microwave absorption. Small 2023, 19, 2302961.

[127]

Meng, L. Z.; Wang, J. H.; Qi, J. Y.; Liu, X. L.; Li, L.; Yun, J. N.; Wang, G.; Yan, J. F.; Bai, J. T. Yolk–shell construction of Co0.7Fe0.3 modified with dual carbon for broadband microwave absorption. J. Colloid Interface Sci. 2024, 659, 945–958.

[128]

Liu, X. L.; Wang, J. H.; Zhong, J. H.; Meng, L. Z.; Yun, J. N.; Bai, J. T.; Wang, G.; Yan, J. F. Construction of hierarchical yolk–shell Co/N-dope C@void@C@MoS2 composites with multiple heterogeneous interfaces toward broadband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2024, 16, 7415–7429.

[129]

Liang, Q. Q.; Wang, L.; Qi, X. S.; Peng, Q.; Gong, X.; Chen, Y. L.; Xie, R.; Zhong, W. Hierarchical engineering of CoNi@air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic–dielectric synergy. J. Mater. Sci. Technol. 2023, 147, 37–46.

[130]

Yang, Z. Q.; Liang, Q. Q.; Qi, X. S.; Zhan, B. B.; Gong, X.; Qu, Y. P.; Ding, J. F.; Yang, J. L.; Chen, Y. L.; Peng, Q. et al. Hollow engineering in CoNi@air@C@MoS2 multicomponent composites derived from bimetallic CoNi Prussian blue analogs for ultra-wide bandwidth and strong electromagnetic wave absorption. J. Mater. Sci. Technol. 2025, 212, 35–43.

[131]

Zhang, D. Q.; Liu, T. T.; Cheng, J. Y.; Cao, Q.; Zheng, G. P.; Liang, S.; Wang, H.; Cao, M. S. Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 2019, 11, 38.

[132]

Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon fiber@MXene@MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

[133]

Zhao, T. B.; Lan, D. Jia, Z. R.; Gao, Z. G.; Wu, G. L. Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res. 2024, 17, 9845–9856.

[134]

Zhang, S. J.; Li, J. Y.; Jin, X. T.; Wu, G. L. Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review. Int. J. Miner. Metall. Mater. 2023, 30, 428–445.

[135]

Wang, Q. Q.; Niu, B.; Han, Y. H.; Zheng, Q.; Li, L.; Cao, M. S. Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device. Chem. Eng. J. 2023, 452, 139042.

[136]

Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2621.

[137]

Liu, X. Y.; Zhou, J. M.; Xue, Y.; Lu, X. Y. Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 2024, 16, 174.

[138]

Wang, G.; Li, C. F.; Estevez, D.; Xu, P.; Peng, M. Y.; Wei, H. J.; Qin, F. X. Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 2023, 15, 152.

[139]

Wang, F. Y.; Wang, N.; Han, X. J.; Liu, D. W.; Wang, Y. H.; Cui, L. R.; Xu, P.; Du, Y. C. Core–shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 2019, 145, 701–711.

[140]

Zhao, T. B.; Jia, Z. R.; Zhang, Y.; Wu, G. L. Multiphase molybdenum carbide doped carbon hollow sphere engineering: The superiority of unique double-shell structure in microwave absorption. Small 2023, 19, 2206323.

[141]

Niu, H. H.; Jiang, X. W.; Xia, Y. D.; Wang, H. L.; Zhang, R.; Li, H. X.; Fan, B. B.; Zhou, Y. C. Construction of hydrangea-like core–shell SiO2@Ti3C2T x @CoNi microspheres for tunable electromagnetic wave absorbers. J. Adv. Ceram. 2023, 12, 711–723.

[142]

Wu, Y. H.; Tan, S. J.; Liu, P. Y.; Zhang, Y.; Li, P.; Ji, G. B. Controllable heterogeneous interfaces and dielectric regulation of hollow raspberry-shaped Fe3O4@rGO hybrids for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 151, 10–18.

[143]

Liccardo, L.; Bordin, M.; Sheverdyaeva, P. M.; Belli, M.; Moras, P.; Vomiero, A.; Moretti, E. Surface defect engineering in colored TiO2 hollow spheres toward efficient photocatalysis. Adv. Funct. Mater. 2023, 33, 2212486.

[144]

Zhao, B.; Li, R. S.; Men, Q. Q.; Yan, Z. K.; Lv, H. L.; Wu, L.; Che, R. C. Transformation of 2D flakes to 3D hollow bowls: Matthew effect enables defects to prevail in electromagnetic wave absorption of hollow rGO bowls. Small 2024, 20, 2208135.

[145]

Xu, L. L.; Tao, J. Q.; Zhang, X. F.; Yao, Z. J.; Wei, B.; Yang, F.; Zhou, C. Y.; Zavabeti, A.; Zuraiqi, K.; Zhou, J. T. Hollow C@MoS2 nanospheres for microwave absorption. ACS Appl. Nano Mater. 2021, 4, 11199–11209.

[146]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[147]

Li, P. J.; Xu, K. S.; Zhou, Y.; Chen, Y. F.; Zhang, W. L.; Wang, Z. G.; Li, X. S. Growth and electrical properties of n-type monolayer sulfur-doped graphene film in air. J. Alloys Compd. 2021, 860, 158462.

[148]

Lv, H. L.; Zhou, X. D.; Wu, G. L.; Kara, U. I.; Wang, X. G. Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 2021, 9, 19710–19718.

[149]

Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

[150]

Zhang, S. J.; Lan, D.; Zheng, J. J.; Kong, J.; Gu, J. W.; Feng, A. L.; Jia, Z. R.; Wu, G. L. Perspectives of nitrogen-doped carbons for electromagnetic wave absorption. Carbon 2024, 221, 118925.

[151]

Wu, P. K.; Feng, Y. R.; Xu, J.; Fang, Z. G.; Liu, Q. C.; Kong, X. K. Ultralight N-doped platanus acerifolia biomass carbon microtubes/RGO composite aerogel with enhanced mechanical properties and high-performance microwave absorption. Carbon 2023, 202, 194–203.

[152]

Liu, P. B.; Zhang, Y. Q.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. X. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298.

[153]

Zhang, T.; Asefa, T. Heteroatom-doped carbon materials for hydrazine oxidation. Adv. Mater. 2019, 31, 1804394.

[154]

Su, X. G.; Wang, J.; Liu, T.; Zhang, Y.; Liu, Y. N.; Zhang, B.; Liu, Y. Q.; Wu, H. J.; Xu, H. X. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. 2024, 34, 2403397.

[155]

Wang, J.; Han, M. J.; Liu, Y. N.; Xiang, Y.; Liang, C. B.; Su, X. G.; Liu, Y. Q. Multifunctional microwave absorption materials of multiscale cobalt sulfide/diatoms co-doped carbon aerogel. J. Colloid Interface Sci. 2023, 646, 970–979.

[156]

Sun, Z. H.; Yan, Z. Q.; Li, A. R.; Yue, K. C.; Zhao, L. L.; Qian, L. Dual heteroatoms co-doping strategy of graphene-based dielectric loss electromagnetic absorbent. Appl. Surf. Sci. 2021, 564, 150380.

[157]

Tian, S. Y.; Li, A. R.; Cui, J. B.; Sun, Z. H.; Liu, H. S.; Yan, Z. Q.; Ding, H.; Tian, H. S.; Qian, L. Order effect of nitrogen and phosphorus co-doping carbon nanofibers for enhancing electromagnetic wave absorption. Carbon 2023, 203, 580–589.

[158]

Hu, W.; Wang, C.; Tan, H.; Duan, H. L.; Li, G. N.; Li, N.; Ji, Q. Q.; Lu, Y.; Wang, Y.; Sun, Z. H. et al. Embedding atomic cobalt into graphene lattices to activate room-temperature ferromagnetism. Nat. Commun. 2021, 12, 1854.

[159]

Yan, J.; Ye, Z. D.; Chen, W. X.; Liu, P. B.; Huang, Y. Metal Mo and nonmetal N, S co-doped 3D flowers-like porous carbon framework for efficient electromagnetic wave absorption. Carbon 2024, 216, 118563.

[160]

Xu, H. Y.; Liu, M. J.; Ma, Z.; Kang, B.; Zhang, X.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Zn,N-codoped mesoporous carbon particles/carbon fibers for wide-band electromagnetic wave absorption. Chem. Eng. J. 2024, 479, 147666.

[161]

Huang, M. Q.; Wang, L.; You, W. B.; Che, R. C. Single zinc atoms anchored on MOF-derived N-doped carbon shell cooperated with magnetic core as an ultrawideband microwave absorber. Small 2021, 17, 2101416.

[162]

Liang, H. S.; Chen, G.; Liu, D.; Li, Z. J.; Hui, S. C.; Yun, J. J.; Zhang, L. M.; Wu, H. J. Exploring the Ni 3 d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 2022, 33, 2212604.

[163]

Zhang, X. C.; Li, B.; Xu, J.; Zhang, X.; Shi, Y. N.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Metal ions confined in periodic pores of MOFs to embed single-metal atoms within hierarchically porous carbon nanoflowers for high-performance electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2210456.

[164]

Deng, W. B.; Li, T. H.; Li, H.; Dang, A. L.; Liu, X.; Zhai, J. H.; Wu, H. J. Morphology modulated defects engineering from MnO2 supported on carbon foam toward excellent electromagnetic wave absorption. Carbon 2023, 206, 192–200.

[165]

Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987.

[166]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F regulation engineering. Adv. Funct. Mater. 2022, 32, 2110496.

[167]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200544.

[168]

Gao, Z. G.; Iqbal, A.; Hassan, T.; Zhang, L. M.; Wu, H. J.; Koo, C. M. Texture regulation of metal-organic frameworks, microwave absorption mechanism-oriented structural optimization and design perspectives. Adv. Sci. 2022, 9, 2204151.

[169]

Zhao, B.; Yan, Z. K.; Du, Y. Q.; Rao, L. J.; Chen, G. Y.; Wu, Y. Y.; Yang, L. T.; Zhang, J. C.; Wu, L. M.; Zhang, D. W. et al. High-entropy enhanced microwave attenuation in titanate perovskites. Adv. Mater. 2023, 35, 2210243.

[170]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[171]

Wang, T.; Zhao, W. X.; Miao, Y. K.; Cui, A. G.; Gao, C. H.; Wang, C.; Yuan, L. Y.; Tian, Z. N.; Meng, A. L.; Li, Z. J. et al. Enhancing defect-induced dipole polarization strategy of SiC@MoO3 nanocomposite towards electromagnetic wave absorption. Nano-Micro Lett. 2024, 16, 273.

[172]

Gong, C. C.; Ding, J. W.; Wang, C. X.; Zhang, Y. J.; Cong, H. W.; Liu, H. J.; Guo, Y.; Song, K.; Shi, C. S.; He, F. Utilizing Se vacancies as electronic traps to synergize impedance matching and dipole polarization with ultrathin strategy to boost Fe–Se electromagnetic wave absorption. Chem. Eng. J. 2024, 480, 147793.

[173]

Wang, J.; Wang, Y. P.; Cheng, J. Y.; Fu, Y. R.; Li, Y.; Nie, W. L.; Wang, J. W.; Liu, B.; Zhang, D. Q.; Zheng, G. P. et al. Abundant vacancies induced high polarization-attenuation effects in flower-like WS2 microwave absorbers. J. Mater. Sci. Technol. 2024, 194, 193–202.

[174]

Jia, H. X.; Duan, Y. P.; Wu, N. B.; Gu, S. D.; Wang, M.; Di, J. R.; Ma, J. B. Local charge regulation via selenium vacancies engineering in dielectric cobalt diselenide with enhanced microwave absorption. Chem. Eng. J. 2024, 496, 153783.

[175]

Chen, Y. K.; Wang, Y.; Li, C. C.; Wang, W.; Xue, X.; Pan, H. G.; Che, R. C. Integrating sulfur doping with a multi-heterointerface Fe7S8/NiS@C composite for wideband microwave absorption. Small 2024, 20, 2401618.

[176]

Zhang, Y. F.; Zhang, L.; Tang, L. F.; Du, R.; Zhang, B. L. S-NiSe/HG nanocomposites with balanced dielectric loss encapsulated in room-temperature self-healing polyurethane for microwave absorption and corrosion protection. ACS Nano 2024, 18, 8411–8422.

[177]

Chang, Q.; Liang, H. S.; Shi, B.; Li, X. L.; Zhang, Y. T.; Zhang, L. M.; Wu, H. J. Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J. Colloid Interface Sci. 2021, 588, 336–345.

[178]

Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

[179]

Rao, L. J.; Liu, Z. W.; Wang, L.; You, W. B.; Yang, C. D.; Zhang, R. X.; Xiong, X. H.; Yang, L. T.; Zhang, H. B.; Zhang, J. C. et al. Dimensional engineering of hierarchical nanopagodas for customizing cross-scale magnetic coupling networks to enhance electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2306984.

[180]

Dong, S.; Hu, P. T.; Li, X. T.; Hong, C. Q.; Zhang, X. H.; Han, J. C. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 2020, 398, 125588.

[181]

Rao, Y. C.; Qi, X. S.; Peng, Q.; Chen, Y. L.; Gong, X.; Xie, R.; Zhong, W. Mixed-dimensional conductive network heterostructures: An effective interfacial strategy to aggrandize dielectric loss for designing microwave absorbers. J. Alloys Compd. 2022, 910, 164974.

[182]

Huang, X. M.; Liu, X. H.; Zhang, Y.; Zhou, J. X.; Wu, G. L.; Jia, Z. R. Construction of NiCeO x nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2023, 147, 16–25.

[183]

Liang, Q. Q.; Zhang, J. J.; Qi, X. S.; Wang, L.; Ding, J. F.; Gong, X.; Yang, J. L.; Chen, Y. L.; Qu, Y. P.; Peng, Q. et al. From core@shell ZnSe/FeSe2@MoSe2 to core@shell@shell magnetic ZnFe2O4@C@MoSe2 flower-like nanocomposites: An effective strategy to boost microwave absorption performance of MoSe2-based nanocomposites. Mater. Today Phys. 2023, 30, 100952.

[184]

Huang, M. Q.; Wang, L.; Pei, K.; Li, B. X.; You, W. B.; Yang, L. T.; Zhou, G.; Zhang, J. C.; Liang, C. Y.; Che, R. C. Heterogeneous interface engineering of Bi-metal MOFs-derived ZnFe2O4–ZnO–Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater. 2024, 34, 2308898.

[185]

Jia, H. X.; Duan, Y. P.; Chen, W.; Di, J. R.; Wang, M. Multi-dimensional nano-microstructures design of MOF-derived CoSe2@N–C composites toward excellent microwave absorption. Mater. Today Phys. 2024, 43, 101415.

[186]

Zhang, W.; Tan, G. G.; Hu, J. X.; Wang, Q. W.; Yan, W. R.; Man, Q. K. Enhancing electromagnetic wave absorption performance through co-regulation of microstructure and spatial orientation of Re–Ni MOF. Chem. Eng. J. 2023, 478, 147414.

[187]

Wang, L.; Huang, M. Q.; Yu, X. F.; You, W. B.; Zhang, J.; Liu, X. H.; Wang, M.; Che, R. C. MOF-derived Ni1– x Co x @Carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 2020, 12, 150.

[188]

Guo, Y.; Duan, Y. P.; Liu, X. J.; Zhang, H.; Yuan, T. K.; Wen, N. X.; Li, C. W.; Pang, H. F.; Fan, Z.; Pan, L. J. Boosting conductive loss and magnetic coupling based on “size modulation engineering” toward lower-frequency microwave absorption. Small 2024, 20, 2308809.

[189]
He, M. K.; Hu, J. W.; Yan, H.; Zhong, X.; Zhang, Y. L.; Liu, P. B.; Kong, J.; Gu, J. W. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316691.
[190]

Li, T.; Li, J. Z.; Xu, Z. K.; Tian, Y. R.; Li, J. T.; Du, J. N.; Meng, F. B. Electromagnetic response of multistage-helical nano-micro conducting polymer structures and their enhanced attenuation mechanism of multiscale-chiral synergistic effect. Small 2023, 19, 2300233.

[191]

Liu, Y. H.; Zhang, H. B.; Chen, G. Y.; Wang, X. Y.; Qian, Y. T.; Wu, Z. C.; You, W. B.; Tang, Y.; Zhang, J. C.; Che, R. C. Engineering phase to reinforce dielectric polarization in nickel sulfide heterostructure for electromagnetic wave absorption. Small 2024, 20, 2308129.

[192]

Zhang, H. B.; Cheng, J. Y.; Wang, H. H.; Huang, Z. H.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Che, R. C.; Cao, M. S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 2022, 32, 2108194.

[193]

Zhang, H. B.; Zhou, X. D.; Yuan, M. Y.; Xiong, X. H.; Lv, X. W.; Liu, Y. H.; Lv, H. L.; Lai, Y. X.; Zhang, J. C.; Zhang, H. R. et al. Highly selective nano-interface engineering in multishelled nanocubes for enhanced broadband electromagnetic attenuation. Adv. Funct. Mater. 2024, 34, 2313829.

[194]

Zhao, T. B.; Zheng, T. T.; Lan, D.; Zhang, Y.; Sun, Z. S.; Wang, C.; Jia, Z. R.; Wu, G. L. Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption. Nano Res. 2024, 17, 1625–1635.

[195]

Yan, Y. F.; Zhang, K. L.; Qin, G. Y.; Gao, B. S.; Zhang, T.; Huang, X. X.; Zhou, Y. Phase engineering on MoS2 to realize dielectric gene engineering for enhancing microwave absorbing performance. Adv. Funct. Mater. 2024, 34, 2316338.

[196]

Wu, P. K.; Kong, X. K.; Feng, Y. R.; Ding, W.; Sheng, Z. G.; Liu, Q. C.; Ji, G. B. Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 2024, 34, 2311983.

[197]

Zhao, Z. H.; Shi, B.; Wang, T.; Wang, R. M.; Chang, Q.; Yun, J. J.; Zhang, L. M.; Wu, H. J. Microscopic and macroscopic structural strategies for enhancing microwave absorption in MXene-based composites. Carbon 2023, 215, 118450.

[198]

Li, S. S.; Tang, X. W.; Zhao, X.; Lu, S. J.; Luo, J. T.; Chai, Z. Y.; Ma, T. T.; Lan, Q. Q.; Ma, P. M.; Dong, W. F. et al. Hierarchical graphene@MXene composite foam modified with flower-shaped fes for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 2023, 133, 238–248.

[199]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

[200]

Wang, Y. H.; Zhang, M. H.; Deng, X. S.; Li, Z. G.; Chen, Z. S.; Shi, J. M.; Han, X. J.; Du, Y. C. Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption. Int. J. Miner. Metall. Mater. 2023, 30, 536–547.

[201]

Cheng, H. R.; Pan, Y. M.; Li, W.; Liu, C. T.; Shen, C. Y.; Liu, X. H.; Pan, C. F. Facile design of multifunctional melamine foam with Ni-anchored reduced graphene oxide/MXene as highly efficient microwave absorber. Nano Today 2023, 52, 101958.

[202]

Peng, Y. M.; Gong, K. J.; Liu, A.; Yan, H.; Guo, H.; Wang, J.; Guo, X. L.; Yang, X. N.; Qi, S. H.; Qiu, H. Ultralight and rigid PBO nanofiber aerogel with superior electromagnetic wave absorption properties. J. Mater. Sci. Technol. 2025, 211, 320–329.

[203]

Zhang, M.; Ling, H. L.; Wang, T.; Jiang, Y. J.; Song, G. Y.; Zhao, W.; Zhao, L. B.; Cheng, T. T.; Xie, Y. X.; Guo, Y. Y. et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 2022, 14, 157.

[204]

Deng, W. B.; Li, T. H.; Li, H.; Abdul, J.; Liu, L. T.; Dang, A. L.; Liu, X.; Duan, M. F.; Wu, H. J. MOF derivatives with gradient structure anchored on carbon foam for high-performance electromagnetic wave absorption. Small 2024, 20, 2309806.

[205]

Ma, Y. L.; Li, Y. B.; Zhao, X.; Zhang, L. Y.; Wang, B. C.; Nie, A. M.; Mu, C. P.; Xiang, J. Y.; Zhai, K.; Xue, T. Y. et al. Lightweight and multifunctional super-hydrophobic aramid nanofiber/multiwalled carbon nanotubes/Fe3O4 aerogel for microwave absorption, thermal insulation and pollutants adsorption. J. Alloys Compd. 2022, 919, 165792.

[206]

Guo, Z. Z.; Ren, P. G.; Wang, J.; Hou, X.; Tang, J. H.; Liu, Z. B.; Chen, Z. Y.; Jin, Y. L.; Ren, F. Methylene blue adsorption derived thermal insulating N,S-co-doped TiC/carbon hybrid aerogel for high-efficient absorption-dominant electromagnetic interference shielding. Chem. Eng. J. 2023, 451, 138667.

[207]

Zhan, B. B.; Qu, Y. P.; Qi, X. S.; Ding, J. F.; Shao, J. J.; Gong, X.; Yang, J. L.; Chen, Y. L.; Peng, Q.; Zhong, W. et al. Mixed-dimensional assembly strategy to construct reduced graphene oxide/carbon foams heterostructures for microwave absorption, anti-corrosion and thermal insulation. Nano-Micro Lett. 2024, 16, 221.

[208]

Chen, X. T.; Zhou, M.; Zhao, Y.; Gu, W. H.; Wu, Y.; Tang, S. L.; Ji, G. B. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 2022, 24, 5280–5290.

[209]

Tian, Y.; Estevez, D.; Wei, H. J.; Peng, M. Y.; Zhou, L. P.; Xu, P.; Wu, C.; Yan, M.; Wang, H.; Peng, H. X. et al. Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 2021, 421, 129781.

[210]

Jiang, X. Y.; Zhao, Z. X.; Zhou, S. T.; Zou, H. W.; Liu, P. B. Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 45844–45852.

[211]

Luo, J. W.; Wang, Y.; Qu, Z. J.; Wang, W.; Yu, D. Anisotropic, multifunctional and lightweight CNTs@CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation. Chem. Eng. J. 2022, 442, 136388.

[212]

Gao, Y.; Lei, Z. K.; Pan, L. N.; Wu, Q.; Zhuang, X. H.; Tan, G. G.; Ning, M. Q.; Man, Q. K. Lightweight chitosan-derived carbon/rGO aerogels loaded with hollow Co1– x Ni x O nanocubes for superior electromagnetic wave absorption and heat insulation. Chem. Eng. J. 2023, 457, 141325.

[213]

Shan, B.; Wang, Y.; Ji, X. Y.; Huang, Y. Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 2024, 16, 212.

[214]

Tian, Y.; Estevez, D.; Wang, G.; Peng, M. Y.; Qin, F. X. Macro-ordered porous carbon nanocomposites for efficient microwave absorption. Carbon 2024, 218, 118614.

[215]

Wang, X.; Chen, X. M.; He, Q. Y.; Hui, Y. Z.; Xu, C. F.; Wang, B. C.; Shan, F. H.; Zhang, J.; Shao, J. Y. Bidirectional, multilayer MXene/polyimide aerogels for ultra-broadband microwave absorption. Adv. Mater. 2024, 36, 2401733.

[216]

Wang, Q. Q.; Cao, W. Q.; Cao, M. S. MXenes hierarchical architectures: Electromagnetic absorbing, shielding and devices. 2D Mater. 2024, 11, 012001.

[217]

Yu, L. Y.; Zhu, Q. Q.; Guo, Z. Q.; Cheng, Y. H.; Jia, Z. R.; Wu, G. L. Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures. J. Mater. Sci. Technol. 2024, 170, 129–139.

[218]

Fang, Y. S.; Yuan, J.; Liu, T. T.; Wang, Q. Q.; Cao, W. Q.; Cao, M. S. Clipping electron transport and polarization relaxation of Ti3C2T x based nanocomposites towards multifunction. Carbon 2023, 201, 371–380.

[219]

Cheng, H. R.; Pan, Y. M.; Wang, X.; Liu, C. T.; Shen, C. Y.; Schubert, D. W.; Guo, Z. H.; Liu, X. H. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022, 14, 63.

[220]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

[221]

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one step hydrothermal process. ACS Nano, 2010, 4, 4324–4330.

[222]

Wang, J. P.; Shi, S. H.; Yan, Y. Z.; Wan, G. P.; Zhai, H. X.; Yuan, X.; Li, L.; Du, C. L.; Liu, R.; Wang, G. Z. Manganese oxides/graphene aerogels as lightweight microwave absorbers for extreme environment application. Chem. Eng. J. 2024, 493, 152277.

[223]

Shu, R. W.; Zhao, Z. W.; Yang, X. H. Fabrication of nitrogen-doped reduced graphene oxide/porous magnesium ferrite@silica dioxide composite with excellent dual-band electromagnetic absorption performance. Chem. Eng. J. 2023, 473, 145224.

[224]

Chen, Z. Y.; Cao, K. Y.; Zhang, Y.; Yang, X.; Zhou, Z. Y.; Ye, W. P.; Wen, J. Y.; Chen, J.; Zhao, R.; Xue, W. D. Self-assembled heterojunction interfaces between g-C3N4 and rGO nanosheets for enhanced electromagnetic wave absorption. ACS Appl. Nano Mater. 2024, 7, 19688–19697.

[225]

Zhao, X. Y.; Sun, X. H.; Wu, W.; Tang, P.; Du, J. W.; Zhang, X. Y.; Qian, H. N.; Peng, R. H.; Wang, X. W.; Zhang, Y. H. et al. rGO aerogel embedded with organic-inorganic hybrid perovskite for lightweight broadband electromagnetic wave absorption. Nano Res. 2024, 17, 10196–10207.

[226]

Huang, X. G.; Wei, J. W.; Zhang, Y. K.; Qian, B. B.; Jia, Q.; Liu, J.; Zhao, X. J.; Shao, G. F. Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 107.

[227]

Yang, J. M.; Chen, Y. J.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y. Y.; Gao, H.; Xia, Y. Y. et al. Construction of in- situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093.

[228]

Wang, S. J.; Zhang, X.; Hao, S. Y.; Qiao, J.; Wang, Z.; Wu, L. L.; Liu, J. R.; Wang, F. L. Nitrogen-doped magnetic-dielectric-carbon aerogel for high-efficiency electromagnetic wave absorption. Nano-Micro Lett. 2024, 16, 16.

[229]

Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C. S.; Lv, W. et al. Fast gelation of Ti3C2T x MXene initiated by metal ions. Adv. Mater. 2019, 31, 1902432.

[230]

Wu, Z. T.; Deng, Y. Q.; Yu, J. Y.; Han, J. W.; Shang, T. X.; Chen, D. R.; Wang, N.; Gu, S. C.; Lv, W.; Kang, F. Y. et al. Hydroiodic-acid-initiated dense yet porous Ti3C2T x MXene monoliths toward superhigh areal energy storage. Adv. Mater. 2023, 35, 2300580.

[231]

Zhang, S. J.; Lan, D.; Chen, X. L.; Gu, Y. Y.; Ren, J. W.; Du, S. X.; Cai, S. C.; Zhao, X. M.; Zhao, Z. W.; Wu, G. L. Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities. Nano Res. 2024, 17, 1952–1983.

[232]

Zhou, X. J.; Wen, J. W.; Ma, X. H.; Wu, H. J. Manipulation of microstructure of MXene aerogel via metal ions-initiated gelation for electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 624, 505–514.

[233]

Shu, J. C.; Wang, Y. Z.; Cao, M. S. PEDOT:PSS-patched magnetic graphene films with tunable dielectric genes for electromagnetic interference shielding and infrared stealth. J. Mater. Sci. Technol. 2024, 186, 28–36.

[234]

Li, X.; Wu, Z. C.; You, W. B.; Yang, L. T.; Che, R. C. Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 2022, 14, 73.

[235]

Mai, T.; Chen, L.; Wang, P. L.; Liu, Q.; Ma, M. G. Hollow metal-organic framework/MXene/nanocellulose composite films for giga/terahertz electromagnetic shielding and photothermal conversion. Nano-Micro Lett. 2024, 16, 169.

[236]

Li, Z. C.; Liang, J.; Wei, Z. H.; Cao, X.; Shan, J. H.; Li, C. W.; Chen, X. Y.; Zhou, D.; Xing, R. Z.; Luo, C. J. et al. Lightweight foam-like nitrogen-doped carbon nanotube complex achieving highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 168, 114–123.

[237]

Li, Y.; Diao, X. M.; Li, P. C.; Liu, P. P.; Gao, Y.; Zhao, Z. Y.; Chen, X.; Wang, G. Advanced multifunctional Co/N co-doped carbon foam-based phase change materials for wearable thermal management. Chem. Eng. J. 2024, 485, 149858.

[238]

Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 2022, 9, 2204165.

[239]

Li, Z. J.; Zhang, L. M.; Wu, H. J. A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption. Small 2024, 20, 2305120.

[240]

Wu, L. H.; Shi, S. H.; Liu, J.; Liu, X.; Mou, P. P.; Zhao, J. C.; Li, L. R.; Yu, L.; Wen, J. G.; Wang, G. Z. Multicolored microwave absorbers with dynamic frequency modulation. Nano Energy 2023, 118, 108938.

[241]

Wu, L. H.; Liu, J.; Liu, X.; Mou, P. P.; Lv, H. M.; Liu, R.; Wen, J. G.; Zhao, J. C.; Li, J. L.; Wang, G. Z. Microwave-absorbing foams with adjustable absorption frequency and structural coloration. Nano Lett. 2024, 24, 3369–3377.

[242]

Lin, J. H.; Su, J. T.; Weng, M. M.; Xu, W. H.; Huang, J. T.; Fan, T. J.; Liu, Y. D.; Min, Y. G. Applications of flexible polyimide: Barrier material, sensor material, and functional material. Soft Sci. 2023, 3, 2.

[243]

Wang, C. X.; Liu, Q.; Song, H. J.; Jiang, Q. L. Vacuum filtration method towards flexible thermoelectric films. Soft Sci. 2023, 3, 34.

[244]

Nam, S.; Park, C.; Sunwoo, S. H.; Kim, M.; Lee, H.; Lee, M.; Kim, D. H. Soft conductive nanocomposites for recording biosignals on skin. Soft Sci. 2023, 3, 28.

[245]

Liang, C. B.; Zhang, W.; Liu, C. L.; He, J.; Xiang, Y.; Han, M. J.; Tong, Z. W.; Liu, Y. Q. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics. Chem. Eng. J. 2023, 471, 144500.

[246]

Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

[247]

Liang, C. B.; Huo, Q. Q.; Qi, J. M.; Zhang, Y. L.; Liu, C. L.; Liu, Y. Q.; Gu, J. W. Robust solid-solid phase change coating encapsulated glass fiber fabric with electromagnetic interference shielding for thermal management and message encryption. Adv. Funct. Mater. 2024, 34, 2409146.

[248]

Zhong, X.; He, M. K.; Zhang, C. Y.; Guo, Y. Q.; Hu, J. W.; Gu, J. W. Heterostructured BN@Co–C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 34, 2313544.

[249]

He, M. K.; Zhong, X.; Lu, X. H.; Hu, J. W.; Ruan, K. P.; Guo, H.; Zhang, Y. L.; Guo, Y. Q.; Gu, J. W. Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater 2024, 36, 2410186.

[250]

Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z. X.; Yu, Z. Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924.

[251]

Cui, W. G.; Zhou, X. D.; Zhao, B.; You, W. B.; Yang, Y. X.; Fan, B. B.; Wu, L. M.; Che, R. C. 3D porous PVDF foam anchored with ultra-low content of graphene and Ni nanochains towards wideband electromagnetic waves absorption. Carbon 2023, 210, 118070.

[252]

Zhou, D. F.; Yuan, H.; Xiong, Y. L.; Luo, G. Q.; Shen, Q. Constructing highly directional multilayer cell structure (HDMCS) towards broadband electromagnetic absorbing performance for CNTs/PMMA nanocomposites foam. Compos. Sci. Technol. 2021, 203, 108614.

[253]

Zong, J. Y.; Cao, M. S. Graphene-like MXene-based microwave absorbers and shields: Latest progress and perspectives. Mater. Today Phys. 2024, 43, 101400.

[254]

An, Q.; Li, D. W.; Liao, W. H.; Liu, T. T.; Joralmon, D.; Li, X. J.; Zhao, J. M. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 2023, 35, 2300659.

[255]

Li, J. X.; Chen, S. Y.; Fan, R. X.; Gong, X.; Zhao, H. S.; Yan, L. P.; Zhou, Y. P. Structural engineering on carbon materials for microwave absorption: From micro to macro to meta. Carbon 2024, 224, 119058.

[256]

Tao, J. Q.; Xu, L. L.; Pei, C. B.; Gu, Y. S.; He, Y. R.; Zhang, X. F.; Tao, X. W.; Zhou, J. T.; Yao, Z. J.; Tao, S. F. et al. Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 2023, 33, 2211996.

[257]

Wang, B. X.; Xu, C. Y.; Duan, G. Y.; Xu, W.; Pi, F. W. Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 2023, 33, 2213818.

[258]

Wu, Y.; Tan, S. J.; Zhao, Y.; Liang, L. L.; Zhou, M.; Ji, G. B. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater Sci. 2023, 135, 101088.

[259]

Sun, X. X.; Li, Y. B.; Huang, Y. X.; Cheng, Y. J.; Wang, S. S.; Yin, W. L. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 2022, 32, 2107508.

[260]
Ma, W. L.; Liu, X. Y.; Yang, T. Y.; Wang, J. B.; Qiu, Z. R.; Cai, Z. H.; Bai, P. J.; Ji, X. Y.; Huang, Y. Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra-broadband absorption with low-frequency compatibility. Adv. Funct. Mater. 2024 , 2314046, DOI: 10.1002/adfm.202314046.
[261]

Dai, L.; Wang, L. Q.; Chen, B. H.; Xu, Z. T.; Wang, Z. J.; Xiao, R. Shape memory behaviors of 3D printed liquid crystal elastomers. Soft Sci. 2023, 3, 5.

[262]

Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B: Eng. 2018, 143, 172–196.

[263]

Xue, T. T.; Yang, Y.; Yu, D. Y.; Wali, Q.; Wang, Z. Y.; Cao, X. S.; Fan, W.; Liu, T. X. 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 2023, 15, 45.

[264]

Hong, M.; Sun, S.; Lyu, W. Y.; Li, M.; Liu, W. D.; Shi, X. L.; Chen, Z. G. Advances in printing techniques for thermoelectric materials and devices. Soft Sci. 2023, 3, 29.

[265]

Ma, T. B.; Zhang, Y. L.; Ruan, K. P.; Guo, H.; He, M. K.; Shi, X. T.; Guo, Y. Q.; Kong, J.; Gu, J. W. Advances in 3D printing for polymer composites: A review. InfoMat 2024, 6, e12568.

[266]

Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

[267]
Qu, N.; Xu, G. X.; Liu, Y. K.; He, M. K.; Xing, R. Z.; Gu, J. W.; Kong, J. Multi-scale design of metal-organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202402923.
[268]

Feng, M. F.; Zhang, K. F.; Xiao, J. J.; Liu, B.; Cheng, H.; Li, Y.; Zhao, Z. Z.; Liang, B. Material-structure collaborative design for broadband microwave absorption metamaterial with low density and thin thickness. Compos. Part B: Eng. 2023, 263, 110862.

[269]

Qu, N.; Sun, H. X.; Sun, Y. Y.; He, M. K.; Xing, R. Z.; Gu, J. W.; Kong, J. 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat. Commun. 2024, 15, 5642.

[270]

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

[271]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[272]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[273]

Lv, H. L.; Yang, Z. H.; Liu, B.; Wu, G. L.; Lou, Z. C.; Fei, B.; Wu, R. B. A flexible electromagnetic wave-electricity harvester. Nat. Commun. 2021, 12, 834.

[274]

Xiao, J. X.; He, M. K.; Zhan, B. B.; Guo, H.; Yang, J. L.; Zhang, Y. L.; Qi, X. S.; Gu, J. W. Multifunctional microwave absorption materials: Construction strategies and functional applications. Mater. Horiz. 2024, 11, 5874–5894.

Nano Research
Article number: 94907209
Cite this article:
Zhan B, Qi X, Yang J-L, et al. Advancing microwave absorption: Innovative strategies spanning nano-micro engineering to metamaterial design. Nano Research, 2025, 18(3): 94907209. https://doi.org/10.26599/NR.2025.94907209

386

Views

75

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 November 2024
Revised: 20 December 2024
Accepted: 22 December 2024
Published: 11 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return