AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Atomically precise Pd8 nanocluster encapsulated in a hierarchically engineered nanoreactor towards enhanced catalysis

Hui Yang1,§Yi-Ming Li1,2,§ ( )Jinhui Hu1Dongxia Shi1Yongkang Ge1Jiwei Feng1Hongting Sheng1 ( )Manzhou Zhu1,2 ( )
Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Fuyang Normal University, Fuyang 236041, China

§ Hui Yang and Yi-Ming Li contributed equally to this work.

Show Author Information

Graphical Abstract

Hierarchically engineered metal-organic framework nanoreactor provides atomically precise nanoclusters (NCs) with a capacious microenvironment and enhanced mass transfer, which ultimately boosts the catalytic performance of encapsulated NC, showing much better activity than its confined counterpart and even better than the free NC.

Abstract

Metal-organic frameworks (MOFs) have emerged as superior hosting matrices for atomically precise nanoclusters (NCs) encapsulation, offering excellent physical and chemical protections for advanced catalysis. Nevertheless, the MOF coating significantly reduces the NC catalytic efficiency due to the diffusion barriers and the confined microenvironments. Herein, a hierarchically engineered MOF nanoreactor was constructed by controlled structural etching for NC immobilization. This nanoreactor possesses hierarchical pores to accelerate the diffusion rate of reactants and creates hollow structures to unleash the confined NC molecules from the rigid MOF network to a capacious microenvironment. The enhanced mass transfer, improved freedom of NCs, and outstanding stability collectively boosted the catalytic activity of the nanoreactor. By controlling the etching time, freestanding Pd8@zeolitic imidazolate framework-8 (ZIF-8)-TA10 displayed a catalytic efficiency that was 3.17 times greater than that of the initial confined Pd8@ZIF-8 and even better than free Pd8. This work opens a new strategy to reduce the inherent limitations of porous matrixes for developing high-performance catalysts.

Electronic Supplementary Material

Download File(s)
7208_ESM.pdf (2.2 MB)

References

[1]

Wang, X. J.; Yin, B.; Jiang, L. R.; Yang, C.; Liu, Y.; Zou, G.; Chen, S.; Zhu, M. Z. Ligand-protected metal nanoclusters as low-loss, highly polarized emitters for optical waveguides. Science 2023, 381, 784–790.

[2]

Jing, W. T.; Shen, H.; Qin, R. X.; Wu, Q. Y.; Liu, K. L.; Zheng, N. F. Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: From atomically dispersed catalysts to atomically precise clusters. Chem. Rev. 2023, 123, 5948–6002.

[3]

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

[4]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[5]

Zheng, K.; Zhang, J. W.; Zhao, D.; Yang, Y.; Li, Z. M.; Li, G. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501–507.

[6]

Liu, Y. Y.; Chai, X. Q.; Cai, X.; Chen, M. Y.; Jin, R. C.; Ding, W. P.; Zhu, Y. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C–C bond formation. Angew. Chem., Int. Ed. 2018, 57, 9775–9779.

[7]

Guan, Z. J.; He, R. L.; Yuan, S. F.; Li, J. J.; Hu, F.; Liu, C. Y.; Wang, Q. M. Ligand engineering toward the trade-off between stability and activity in cluster catalysis. Angew. Chem., Int. Ed. 2022, 61, e202116965.

[8]

Zhang, Y. F.; Gu, X. R.; Busari, F. K.; Barkaoui, S.; Han, Z. K.; Baiker, A.; Zhao, Z.; Li, G. Size hierarchy of gold clusters in nanogold-catalyzed acetylene hydrochlorination. Nano Res. 2024, 17, 9594–9600.

[9]

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

[10]

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

[11]

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

[12]

Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W. N.; Huo, F. W. Programmable logic in metal-organic frameworks for catalysis. Adv. Mater. 2021, 33, 2007442.

[13]

Li, Y. M.; Yuan, J.; Ren, H.; Ji, C. Y.; Tao, Y.; Wu, Y. H.; Chou, L. Y.; Zhang, Y. B.; Cheng, L. Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2021, 143, 15378–15390.

[14]

Kollmannsberger, K. L.; Kronthaler, L.; Jinschek, J. R.; Fischer, R. A. Defined metal atom aggregates precisely incorporated into metal-organic frameworks. Chem. Soc. Rev. 2022, 51, 9933–9959.

[15]

Li, Y. M.; Hu, J. H.; Zhu, M. Z. Confining atomically precise nanoclusters in metal-organic frameworks for advanced catalysis. Coord. Chem. Rev. 2023, 495, 215364.

[16]

Luo, L. S.; Jin, R. C. Atomically precise metal nanoclusters meet metal-organic frameworks. iScience 2021, 24, 103206.

[17]

Luo, Y. C.; Fan, S. Y.; Yu, W. Q.; Wu, Z. L.; Cullen, D. A.; Liang, C. L.; Shi, J. Y.; Su, C. Y. Fabrication of Au25(SG)18-ZIF-8 nanocomposites: A facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8. Adv. Mater. 2018, 30, 1704576.

[18]

Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

[19]

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

[20]

Wang, N.; Sun, Q. M.; Yu, J. H. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A fascinating class of nanocatalysts. Adv. Mater. 2019, 31, 1803966.

[21]

Cao, J.; Yang, Z. H.; Xiong, W. P.; Zhou, Y. Y.; Wu, Y.; Jia, M. Y.; Zhou, C. Y.; Xu, Z. Y. Ultrafine metal species confined in metal-organic frameworks: Fabrication, characterization and photocatalytic applications. Coord. Chem. Rev. 2021, 439, 213924.

[22]

Kratzl, K.; Kratky, T.; Günther, S.; Tomanec, O.; Zbořil, R.; Michalička, J.; Macak, J. M.; Cokoja, M.; Fischer, R. A. Generation and stabilization of small platinum clusters Pt12± x inside a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 13962–13969.

[23]

Wang, H.; Liu, X. Y.; Yang, W. J.; Mao, G. Y.; Meng, Z.; Wu, Z. K.; Jiang, H. L. Surface-clean Au25 nanoclusters in modulated microenvironment enabled by metal-organic frameworks for enhanced catalysis. J. Am. Chem. Soc. 2022, 144, 22008–22017.

[24]

Zheng, F. Q.; Fan, Y. J.; Chen, W. Homogeneous distribution of Pt16(C4O4SH5)26 clusters in ZIF-67 for efficient hydrogen generation and oxygen reduction. ACS Appl. Mater. Interfaces 2021, 13, 38170–38178.

[25]

Zhang, J.; Cui, X. F.; Zhou, Y.; Kong, T. T.; Wang, Y. X.; Wei, X. W.; Xiong, Y. J. Enhancing the durability of Au clusters in CO2 photoreduction via encapsulation in Cu-based metal-organic frameworks. Chem. Commun. 2023, 59, 2299–2302.

[26]

Yun, Y. P.; Sheng, H. T.; Bao, K.; Xu, L.; Zhang, Y.; Astruc, D.; Zhu, M. Z. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126–4130.

[27]

Wang, H.; Zhang, X. Y.; Zhang, W.; Zhou, M.; Jiang, H. L. Heteroatom-doped Ag25 nanoclusters encapsulated in metal-organic frameworks for photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2024, 63, e202401443.

[28]

Yao, A. M.; Du, Y. X.; Han, M.; Wang, Y.; Hu, J. S.; Zhu, Q. T.; Sheng, H. T.; Zhu, M. Z. Covalence bridge atomically precise metal nanocluster and metal-organic frameworks for enhanced photostability and photocatalysis. Nano Res. 2023, 16, 1527–1532.

[29]

Jiang, Y. L.; Yu, Y.; Zhang, X.; Weinert, M.; Song, X. L.; Ai, J.; Han, L.; Fei, H. H. N-heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 17388–17393.

[30]
Li, Y. M.; Shi, D. X.; Yuan, J.; Zuo, R. M.; Yang, H.; Hu, J. H.; Hu, S. X.; Sheng, H. T.; Zhu, M. Z. In situ encapsulation of atomically precise nanoclusters in reticular frameworks via mechanochemical synthesis. Adv. Mater., in press, DOI: 10.1002/adma.202412768.
[31]

Bi, X. Y.; Li, L. B.; Niu, Q. J.; Liu, X. H.; Luo, L. J.; Jiang, H. H.; You, T. Y. Highly fluorescent magnetic ATT-AuNCs@ZIF-8 for all-in-one detection and removal of Hg2+: An ultrasensitive probe to evaluate its removal efficiency. Inorg. Chem. 2023, 62, 3123–3133.

[32]

Nie, Y. M.; Tao, X. L.; Zhang, H. W.; Chai, Y. Q.; Yuan, R. Self-assembly of gold nanoclusters into a metal-organic framework with efficient electrochemiluminescence and their application for sensitive detection of rutin. Anal. Chem. 2021, 93, 3445–3451.

[33]

You, Q.; Wang, H.; Zhao, Y.; Fan, W. T.; Gu, W. M.; Jiang, H. L.; Wu, Z. K. Bottom-up construction of metal-organic framework loricae on metal nanoclusters with consecutive single nonmetal atom tuning for tailored catalysis. J. Am. Chem. Soc. 2024, 146, 9026–9035.

[34]

Li, M. M.; Qiao, S.; Zheng, Y. L.; Andaloussi, Y. H.; Li, X.; Zhang, Z. J.; Li, A.; Cheng, P.; Ma, S. Q.; Chen, Y. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J. Am. Chem. Soc. 2020, 142, 6675–6681.

[35]

Chen, S. Y.; Lo, W. S.; Huang, Y. D.; Si, X. M.; Liao, F. S.; Lin, S. W.; Williams, B. P.; Sun, T. Q.; Lin, H. W.; An, Y. Y. et al. Probing interactions between metal-organic frameworks and freestanding enzymes in a hollow structure. Nano Lett. 2020, 20, 6630–6635.

[36]

Liang, J. Y.; Gao, S.; Liu, J.; Zulkifli, M. Y. B.; Xu, J. T.; Scott, J.; Chen, V.; Shi, J. F.; Rawal, A.; Liang, K. Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis. Angew. Chem., Int. Ed. 2021, 60, 5421–5428.

[37]

Sun, Y. Y.; Shi, J. F.; Zhang, S. H.; Wu, Y. Z.; Mei, S.; Qian, W. L.; Jiang, Z. Y. Hierarchically porous and water-tolerant metal-organic frameworks for enzyme encapsulation. Ind. Eng. Chem. Res. 2019, 58, 12835–12844.

[38]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[39]

Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J. L.; Luque, R.; Li, Y. et al. Ordered macro-microporous metal-organic framework single crystals. Science 2018, 359, 206–210.

[40]

Li, K.; Yang, J.; Huang, R.; Lin, S. L.; Gu, J. L. Ordered large-pore mesoMOFs based on synergistic effects of triblock polymer and Hofmeister ion. Angew. Chem., Int. Ed. 2020, 59, 14124–14128.

[41]

Cai, G. R.; Jiang, H. L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew. Chem. 2017, 129, 578–582.

[42]

Park, J.; Wang, Z. U.; Sun, L. B.; Chen, Y. P.; Zhou, H. C. Introduction of functionalized mesopores to metal-organic frameworks via metal-ligand-fragment coassembly. J. Am. Chem. Soc. 2012, 134, 20110–20116.

[43]

Yue, Y. F.; Binder, A. J.; Song, R. J.; Cui, Y. J.; Chen, J. H.; Hensley, D. K.; Dai, S. Encapsulation of large dye molecules in hierarchically superstructured metal-organic frameworks. Dalton Trans. 2014, 43, 17893–17898.

[44]

Yuan, S.; Zou, L. F.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T. et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat. Commun. 2017, 8, 15356.

[45]

Feng, L.; Yuan, S.; Zhang, L. L.; Tan, K.; Li, J. L.; Kirchon, A.; Liu, L. M.; Zhang, P.; Han, Y.; Chabal, Y. J. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 2363–2372.

[46]

Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J. W.; Caruso, F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 2016, 26, 5827–5834.

[47]

Qiu, J. C.; Lin, Y. R.; Zhang, S. T.; Ma, J.; Zhang, Y.; Yuan, M. W.; Sun, G. B.; Nan, C. Y. Hollow catalysts through different etching treatments to improve active sites and oxygen vacancies for high-performance Li-O2 battery. Nano Res. 2023, 16, 6798–6804.

[48]

Wang, S. H.; Fan, Y. N.; Teng, J.; Fan, Y. Z.; Jiang, J. J.; Wang, H. P.; Grützmacher, H.; Wang, D. W.; Su, C. Y. Nanoreactor based on macroporous single crystals of metal-organic framework. Small 2016, 12, 5702–5709.

[49]

An, P.; Anumula, R.; Cui, C. N.; Liu, Y.; Zhan, F.; Tao, Y.; Luo, Z. X. A facile method to synthesize water-soluble Pd8 nanoclusters unraveling the catalytic mechanism of p-nitrophenol to p-aminophenol. Nano Res. 2019, 12, 2589–2596.

Nano Research
Article number: 94907208
Cite this article:
Yang H, Li Y-M, Hu J, et al. Atomically precise Pd8 nanocluster encapsulated in a hierarchically engineered nanoreactor towards enhanced catalysis. Nano Research, 2025, 18(3): 94907208. https://doi.org/10.26599/NR.2025.94907208

730

Views

288

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 08 November 2024
Revised: 17 December 2024
Accepted: 20 December 2024
Published: 22 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return