Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cobalt-based oxides are renowned for their excellent activity in the oxygen evolution reaction (OER), making them promising alternatives to precious metal catalysts. Among these, β-CoMoO4, with its wolframite structure, exhibits superior OER performance compared to widely studied cobalt-based perovskite oxides. However, its underlying catalytic mechanism remains largely unexplored. In this study, we synthesized β-CoMoO4 using a hydrothermal method and achieved remarkable OER catalytic performance in an alkaline environment, with an overpotential of 366 mV at a current density of 10 mA/cm2 and an intrinsic activity of 180 μA/cmox2 at 1.55 V (vs. reversible hydrogen electrode (RHE)). Following OER activation, the micron-sized rod-like structure of β-CoMoO4 dissociates as a whole and reconstructs into amorphous CoOOH, forming a hexagonal flake structure on the scale of hundreds of nanometers. This transformation provides abundant surface active sites with a low-coordination structure. By combining in situ X-ray absorption fine structure (XAFS) with cyclic voltammetry (CV) scanning, we investigated the kinetic behavior of the active sites of β-CoMoO4 as a function of potential. The results indicate that the Co ions in this low-coordination structure can be pre-oxidized at relatively low voltages. Therefore, the excellent OER performance of β-CoMoO4 is attributed to its unique bulk-phase reconstruction behavior and the strong deprotonation ability of the in situ generated amorphous low-coordination active structure. Our research provides valuable insights for the development of new and efficient cobalt-based oxide electrocatalysts for water-splitting applications.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir–Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.
Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.
May, K. J.; Carlton, C. E.; Stoerzinger, K. A.; Risch, M.; Suntivich, J.; Lee, Y. L.; Grimaud, A.; Shao-Horn, Y. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 2012, 3, 3264–3270.
Yang, L. Y.; Glasenapp, P.; Greilich, A.; Reuter, D.; Wieck, A. D.; Yakovlev, D. R.; Bayer, M.; Crooker, S. A. Two-colour spin noise spectroscopy and fluctuation correlations reveal homogeneous linewidths within quantum-dot ensembles. Nat. Commun. 2014, 5, 4949.
Zu, M. Y.; Wang, C. W.; Zhang, L.; Zheng, L. R.; Yang, H. G. Reconstructing bimetallic carbide Mo6Ni6C for carbon interconnected moni alloys to boost oxygen evolution electrocatalysis. Mater. Horiz. 2019, 6, 115–121.
Gao, L. K.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Q. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428–8469.
Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.
He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897–3900.
Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.
Zheng, X. B.; Yang, J. R.; Xu, X.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Wang, G. X. Deciphering cationic and anionic overoxidation: Key insights into the intrinsic structural degradation of catalysts. Adv. Energy Mater. 2024, 14, 2401227.
Song, S. Z.; Zhou, J.; Su, X. Z.; Wang, Y.; Li, J.; Zhang, L. J.; Xiao, G. P.; Guan, C. Z.; Liu, R. D.; Chen, S. G. et al. Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 2018, 11, 2945–2953.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.
Bergmann, A.; Jones, T. E.; Martinez Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 2018, 1, 711–719.
Zhang, R. R.; Pan, L.; Guo, B. B.; Huang, Z. F.; Chen, Z. X.; Wang, L.; Zhang, X. W.; Guo, Z. Y.; Xu, W.; Loh, K. P. et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281.
Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.
Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.
Zhang, S.; Gu, S. Q.; Wang, Y.; Liang, C.; Yu, Y.; Han, L.; Zheng, S.; Zhang, N.; Liu, X. S.; Zhou, J. et al. Spontaneous delithiation under operando condition triggers formation of an amorphous active layer in spinel cobalt oxides electrocatalyst toward oxygen evolution. ACS Catal. 2019, 9, 7389–7397.
Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.
Zhang, J. L.; Geng, S. P.; Li, R. C.; Zhang, X. F.; Zhou, Y. C.; Yu, T. W.; Wang, Y.; Song, S. Q.; Shao, Z. P. Novel monoclinic ABO4 oxide with single-crystal structure as next generation electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2021, 420, 130492.
Xiao, H. B.; Chi, K.; Yin, H. X.; Zhou, X. J.; Lei, P. X.; Liu, P. Z.; Fang, J. K.; Li, X. H.; Yuan, S. L.; Zhang, Z. et al. Excess activity tuned by distorted tetrahedron in CoMoO4 for oxygen evolution. Energy Environ. Mater. 2024, 7, e12495.
Ge, L. H.; Lai, W.; Deng, Y. L.; Bao, J.; Ouyang, B.; Li, H. M. Spontaneous dissolution of oxometalates boosting the surface reconstruction of CoMO x (M = Mo, V) to achieve efficient overall water splitting in alkaline media. Inorg. Chem. 2022, 61, 2619–2627.
Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2011, 2, 381.
Xu, Y.; Xie, L. J.; Li, D.; Yang, R.; Jiang, D. L.; Chen, M. Engineering Ni(OH)2 nanosheet on CoMoO4 nanoplate array as efficient electrocatalyst for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2018, 6, 16086–16095.
Cui, X.; Cui, Y.; Chen, M. L.; Xiong, R.; Huang, Y. C.; Liu, X. W. Enhancing electrochemical hydrogen evolution performance of CoMoO4-based microrod arrays in neutral media through alkaline activation. ACS Appl. Mater. Interfaces 2020, 12, 30905–30914.
Costa, R. K. S.; Teles, S. C.; Siqueira, K. P. F. The relationship between crystal structures and thermochromism in CoMoO4. Chem. Pap. 2021, 75, 237–248.
Rodriguez, M.; Stolzemburg, M. C. P.; Bruziquesi, C. G. O.; Silva, A. C.; Abreu, C. G.; Siqueira, K. P. F.; Oliveira, L. C. A.; Pires, M. S.; Lacerda, L. C. T.; Ramalho, T. C. et al. Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media. CrystEngComm 2018, 20, 5592–5601.
Chen, Y.; Gao, Q.; Jiang, Z.; Li, J.; Zhang, S. Quick-scanning X-ray absorption fine structure beamline at SSRF. Nucl. Sci. Tech. 2024, 35, 92.
Solé, V. A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B: At. Spectrosc. 2007, 62, 63–68.
Liu, X. L.; Yang, Y. X.; Guan, S. Y. An efficient electrode based on one-dimensional CoMoO4 nanorods for oxygen evolution reaction. Chem. Phys. Lett. 2017, 675, 11–14.
Liu, Z. L.; Yuan, C.; Teng, F. Crystal facets-predominated oxygen evolution reaction activity of earth abundant CoMoO4 electrocatalyst. J. Alloys Compd. 2019, 781, 460–466.
Moura, A. P. D.; Oliveira, L. H. D.; Pereira, P. F. S.; Rosa, I. L. V.; Li, M. S.; Longo, E.; Varela, J. A. Photoluminescent properties of CoMoO4 nanorods quickly synthesized and annealed in a domestic microwave oven. Adv. Chem. Eng. Sci. 2012, 2, 465–473.
Livage, C.; Hynaux, A.; Marrot, J.; Nogues, M.; Férey, G. Solution process for the synthesis of the “high-pressure” phase CoMoO4 and X-ray single crystal resolution. J. Mater. Chem. 2002, 12, 1423–1425.
Rodriguez, J. A.; Chaturvedi, S.; Hanson. J. C.; Albornoz, A.; Brito, J. L. Electronic properties and phase transformations in CoMoO4 and NiMoO4 XANES and time-resolved synchrotron XRD studies. J. Phys. Chem. B 1998, 102, 1347–1355.
Zhou, J.; Wang, Y.; Su, X. Z.; Gu, S. Q.; Liu, R. D.; Huang, Y. B.; Yan, S.; Li, J.; Zhang, S. Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ. Sci. 2019, 12, 739–746.
Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.
Yang, H.; Li, F. S.; Zhan, S. Q.; Liu, Y. W.; Li, W. L.; Meng, Q. J.; Kravchenko, A.; Liu, T. Q.; Yang, Y.; Fang, Y. et al. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nat. Catal. 2022, 5, 414–429.
Su, X. Z.; Wang, Y.; Zhou, J.; Gu, S. Q.; Li, J.; Zhang, S. Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 11286–11292.
Wu, Y. H.; Janák, M.; Abdala, P. M.; Borca, C. N.; Wach, A.; Kierzkowska, A.; Donat, F.; Huthwelker, T.; Kuznetsov, D. A.; Müller, C. R. Probing surface transformations of lanthanum nickelate electrocatalysts during oxygen evolution reaction. J. Am. Chem. Soc. 2024, 146, 11887–11896.
Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.
Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d–p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem., Int. Ed. 2024, 63, e202404968.
Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.
Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189–4194.
492
Views
101
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).