AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (24.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Unveiling the superior oxygen evolution reaction performance of β-CoMoO4 nanorods: Insights into catalytic mechanisms and active site dynamics

Xinyu Zhong1,3Yu Chen2Tao Gan2Yuying Huang1,2,3( )Jiong Li1,2,3 ( )Shuo Zhang1,2,3 ( )
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

The β-CoMoO4 undergoes a complete bulk reconstruction into catalytically active CoOOH, and exhibits strong pre-oxidation capabilities, with a stable low-coordination active structure.

Abstract

Cobalt-based oxides are renowned for their excellent activity in the oxygen evolution reaction (OER), making them promising alternatives to precious metal catalysts. Among these, β-CoMoO4, with its wolframite structure, exhibits superior OER performance compared to widely studied cobalt-based perovskite oxides. However, its underlying catalytic mechanism remains largely unexplored. In this study, we synthesized β-CoMoO4 using a hydrothermal method and achieved remarkable OER catalytic performance in an alkaline environment, with an overpotential of 366 mV at a current density of 10 mA/cm2 and an intrinsic activity of 180 μA/cmox2 at 1.55 V (vs. reversible hydrogen electrode (RHE)). Following OER activation, the micron-sized rod-like structure of β-CoMoO4 dissociates as a whole and reconstructs into amorphous CoOOH, forming a hexagonal flake structure on the scale of hundreds of nanometers. This transformation provides abundant surface active sites with a low-coordination structure. By combining in situ X-ray absorption fine structure (XAFS) with cyclic voltammetry (CV) scanning, we investigated the kinetic behavior of the active sites of β-CoMoO4 as a function of potential. The results indicate that the Co ions in this low-coordination structure can be pre-oxidized at relatively low voltages. Therefore, the excellent OER performance of β-CoMoO4 is attributed to its unique bulk-phase reconstruction behavior and the strong deprotonation ability of the in situ generated amorphous low-coordination active structure. Our research provides valuable insights for the development of new and efficient cobalt-based oxide electrocatalysts for water-splitting applications.

Electronic Supplementary Material

Download File(s)
7204_ESM.pdf (1.5 MB)

References

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[2]

Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir–Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

[3]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3− x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[4]

May, K. J.; Carlton, C. E.; Stoerzinger, K. A.; Risch, M.; Suntivich, J.; Lee, Y. L.; Grimaud, A.; Shao-Horn, Y. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 2012, 3, 3264–3270.

[5]

Yang, L. Y.; Glasenapp, P.; Greilich, A.; Reuter, D.; Wieck, A. D.; Yakovlev, D. R.; Bayer, M.; Crooker, S. A. Two-colour spin noise spectroscopy and fluctuation correlations reveal homogeneous linewidths within quantum-dot ensembles. Nat. Commun. 2014, 5, 4949.

[6]

Zu, M. Y.; Wang, C. W.; Zhang, L.; Zheng, L. R.; Yang, H. G. Reconstructing bimetallic carbide Mo6Ni6C for carbon interconnected moni alloys to boost oxygen evolution electrocatalysis. Mater. Horiz. 2019, 6, 115–121.

[7]

Gao, L. K.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Q. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428–8469.

[8]

Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.

[9]

He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897–3900.

[10]

Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.

[11]

Zheng, X. B.; Yang, J. R.; Xu, X.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Wang, G. X. Deciphering cationic and anionic overoxidation: Key insights into the intrinsic structural degradation of catalysts. Adv. Energy Mater. 2024, 14, 2401227.

[12]

Song, S. Z.; Zhou, J.; Su, X. Z.; Wang, Y.; Li, J.; Zhang, L. J.; Xiao, G. P.; Guan, C. Z.; Liu, R. D.; Chen, S. G. et al. Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 2018, 11, 2945–2953.

[13]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[14]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[15]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[16]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[17]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[18]

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

[19]

Bergmann, A.; Jones, T. E.; Martinez Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; Reier, T.; Dau, H.; Strasser, P. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 2018, 1, 711–719.

[20]

Zhang, R. R.; Pan, L.; Guo, B. B.; Huang, Z. F.; Chen, Z. X.; Wang, L.; Zhang, X. W.; Guo, Z. Y.; Xu, W.; Loh, K. P. et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281.

[21]

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

[22]

Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.

[23]

Zhang, S.; Gu, S. Q.; Wang, Y.; Liang, C.; Yu, Y.; Han, L.; Zheng, S.; Zhang, N.; Liu, X. S.; Zhou, J. et al. Spontaneous delithiation under operando condition triggers formation of an amorphous active layer in spinel cobalt oxides electrocatalyst toward oxygen evolution. ACS Catal. 2019, 9, 7389–7397.

[24]

Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

[25]

Zhang, J. L.; Geng, S. P.; Li, R. C.; Zhang, X. F.; Zhou, Y. C.; Yu, T. W.; Wang, Y.; Song, S. Q.; Shao, Z. P. Novel monoclinic ABO4 oxide with single-crystal structure as next generation electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2021, 420, 130492.

[26]

Xiao, H. B.; Chi, K.; Yin, H. X.; Zhou, X. J.; Lei, P. X.; Liu, P. Z.; Fang, J. K.; Li, X. H.; Yuan, S. L.; Zhang, Z. et al. Excess activity tuned by distorted tetrahedron in CoMoO4 for oxygen evolution. Energy Environ. Mater. 2024, 7, e12495.

[27]

Ge, L. H.; Lai, W.; Deng, Y. L.; Bao, J.; Ouyang, B.; Li, H. M. Spontaneous dissolution of oxometalates boosting the surface reconstruction of CoMO x (M = Mo, V) to achieve efficient overall water splitting in alkaline media. Inorg. Chem. 2022, 61, 2619–2627.

[28]

Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2011, 2, 381.

[29]

Xu, Y.; Xie, L. J.; Li, D.; Yang, R.; Jiang, D. L.; Chen, M. Engineering Ni(OH)2 nanosheet on CoMoO4 nanoplate array as efficient electrocatalyst for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2018, 6, 16086–16095.

[30]

Cui, X.; Cui, Y.; Chen, M. L.; Xiong, R.; Huang, Y. C.; Liu, X. W. Enhancing electrochemical hydrogen evolution performance of CoMoO4-based microrod arrays in neutral media through alkaline activation. ACS Appl. Mater. Interfaces 2020, 12, 30905–30914.

[31]

Costa, R. K. S.; Teles, S. C.; Siqueira, K. P. F. The relationship between crystal structures and thermochromism in CoMoO4. Chem. Pap. 2021, 75, 237–248.

[32]

Rodriguez, M.; Stolzemburg, M. C. P.; Bruziquesi, C. G. O.; Silva, A. C.; Abreu, C. G.; Siqueira, K. P. F.; Oliveira, L. C. A.; Pires, M. S.; Lacerda, L. C. T.; Ramalho, T. C. et al. Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media. CrystEngComm 2018, 20, 5592–5601.

[33]

Chen, Y.; Gao, Q.; Jiang, Z.; Li, J.; Zhang, S. Quick-scanning X-ray absorption fine structure beamline at SSRF. Nucl. Sci. Tech. 2024, 35, 92.

[34]

Solé, V. A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B: At. Spectrosc. 2007, 62, 63–68.

[35]

Liu, X. L.; Yang, Y. X.; Guan, S. Y. An efficient electrode based on one-dimensional CoMoO4 nanorods for oxygen evolution reaction. Chem. Phys. Lett. 2017, 675, 11–14.

[36]

Liu, Z. L.; Yuan, C.; Teng, F. Crystal facets-predominated oxygen evolution reaction activity of earth abundant CoMoO4 electrocatalyst. J. Alloys Compd. 2019, 781, 460–466.

[37]

Moura, A. P. D.; Oliveira, L. H. D.; Pereira, P. F. S.; Rosa, I. L. V.; Li, M. S.; Longo, E.; Varela, J. A. Photoluminescent properties of CoMoO4 nanorods quickly synthesized and annealed in a domestic microwave oven. Adv. Chem. Eng. Sci. 2012, 2, 465–473.

[38]

Livage, C.; Hynaux, A.; Marrot, J.; Nogues, M.; Férey, G. Solution process for the synthesis of the “high-pressure” phase CoMoO4 and X-ray single crystal resolution. J. Mater. Chem. 2002, 12, 1423–1425.

[39]

Rodriguez, J. A.; Chaturvedi, S.; Hanson. J. C.; Albornoz, A.; Brito, J. L. Electronic properties and phase transformations in CoMoO4 and NiMoO4 XANES and time-resolved synchrotron XRD studies. J. Phys. Chem. B 1998, 102, 1347–1355.

[40]

Zhou, J.; Wang, Y.; Su, X. Z.; Gu, S. Q.; Liu, R. D.; Huang, Y. B.; Yan, S.; Li, J.; Zhang, S. Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ. Sci. 2019, 12, 739–746.

[41]

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

[42]

Yang, H.; Li, F. S.; Zhan, S. Q.; Liu, Y. W.; Li, W. L.; Meng, Q. J.; Kravchenko, A.; Liu, T. Q.; Yang, Y.; Fang, Y. et al. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nat. Catal. 2022, 5, 414–429.

[43]

Su, X. Z.; Wang, Y.; Zhou, J.; Gu, S. Q.; Li, J.; Zhang, S. Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 11286–11292.

[44]

Wu, Y. H.; Janák, M.; Abdala, P. M.; Borca, C. N.; Wach, A.; Kierzkowska, A.; Donat, F.; Huthwelker, T.; Kuznetsov, D. A.; Müller, C. R. Probing surface transformations of lanthanum nickelate electrocatalysts during oxygen evolution reaction. J. Am. Chem. Soc. 2024, 146, 11887–11896.

[45]

Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

[46]

Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d–p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem., Int. Ed. 2024, 63, e202404968.

[47]

Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.

[48]

Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189–4194.

Nano Research
Article number: 94907204
Cite this article:
Zhong X, Chen Y, Gan T, et al. Unveiling the superior oxygen evolution reaction performance of β-CoMoO4 nanorods: Insights into catalytic mechanisms and active site dynamics. Nano Research, 2025, 18(3): 94907204. https://doi.org/10.26599/NR.2025.94907204

492

Views

101

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 November 2024
Revised: 09 December 2024
Accepted: 18 December 2024
Published: 20 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return