AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (28.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Optical ratiometric silica pH sensors unveil active transport and subcellular particle localization in protoplasts

Helena Iuele1Lorenzo Maria Curci2Alessio Bucciarelli3Valentina Onesto1Stefania Forciniti1Giuseppe Gigli1,4Loretta L. del Mercato1 ( )Monica De Caroli2,5 ( )Gabriella Piro2,5,
Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
Department of Biological and Environmental Sciences and Technologies, University of Salento, c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
BIOtech Research Center, Italy and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Via Delle Regole 101, 38123 Trento, Italy
Department of Experimental Medicine, University of Salento, c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
NBFC National Biodiversity Future Center, 90133 Palermo, Italy
Deceased
Show Author Information

Graphical Abstract

This work reports the synthesis and characterization of dual-function silica-based optical sensors with tunable sizes (100–1000 nm) for imaging particle localization in protoplasts while simultaneously measuring intracellular pH.

Abstract

Understanding the interaction mechanisms of engineered nanomaterials (ENMs) with plant membranes is crucial for their effective use in various applications. While passive transport of smaller ENMs is well-documented, the mechanisms underlying active transport of larger ENMs remain poorly understood. This study systematically investigates the active transport and subcellular distribution of ENMs (100–1000 nm) within protoplasts using optical ratiometric silica pH sensors for localization. Highly monodispersed ratiometric pH sensors, based on silica particles modified with fluorescein-5-isothiocyanate (FITC) and cyanine3 NHS ester (CY3) dyes, were employed to elucidate internalization mechanisms. Protoplasts from Nicotiana tabacum L. leaves successfully internalized the sensors. 3D segmentation of protoplasts revealed distinct pH gradients, indicating vacuole accumulation. Colocalization analysis and cellular compartments staining further confirmed sensor distribution. High-throughput imaging flow cytometry showed efficient internalization rates, which decreased after cell wall regeneration. Notably, inhibition experiments with the salicylic acid (SA) and Tyrphostin A23 (TyrA23) inhibitors confirmed clathrin-mediated endocytosis in particle uptake. This study establishes rational design principles for controlling active ENM uptake and subcellular localization via optical pH sensing in protoplasts. The findings enhance our understanding of plant cell trafficking mechanisms and hold promise for targeted delivery and applications in plant biology research.

Electronic Supplementary Material

Video
7201_Video_S1.mp4
7201_Video_S2.mp4
Download File(s)
7201_ESM.pdf (3.4 MB)

References

[1]

Barhoum, A.; García-Betancourt, M. L.; Jeevanandam, J.; Hussien, E. A.; Mekkawy, S. A.; Mostafa, M.; Omran, M. M.; Abdalla, M. S.; Bechelany, M. Review on natural, incidental, bioinspired, and engineered nanomaterials: History, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials 2022, 12, 177.

[2]

He, X. X.; Wang, K. M.; Tan, W. H.; Liu, B.; Lin, X.; He, C. M.; Li, D.; Huang, S. S.; Li, J. Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc. 2003, 125, 7168–7169.

[3]

Wu, Y. R.; Phillips, J. A.; Liu, H. P.; Yang, R. H.; Tan, W. H. Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2008, 2, 2023–2028.

[4]

Huo, S. D.; Jin, S. B.; Ma, X. W.; Xue, X. D.; Yang, K. N.; Kumar, A.; Wang, P. C.; Zhang, J. C.; Hu, Z. B.; Liang, X. J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 2014, 8, 5852–5862.

[5]

Demirer, G. S.; Landry, M. P. Delivering genes to plants. Chem. Eng. Prog. 2017, 113, 40–45.

[6]

Naqvi, S.; Maitra, A. N.; Abdin, M. Z.; Akmal, M.; Arora, I.; Samim, M. Calcium phosphatenanoparticle mediated genetic transformation in plants. J. Mater. Chem. 2012, 22, 3500–3507.

[7]

Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X. L.; Chen, C. Y.; Zhao, Y. L. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011, 7, 1322–1337.

[8]

Torney, F.; Trewyn, B. G.; Lin, V. S. Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2007, 2, 295–300.

[9]

Liu, Q. L.; Chen, B.; Wang, Q. L.; Shi, X. L.; Xiao, Z. Y.; Lin, J. X.; Fang, X. H. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009, 9, 1007–1010.

[10]

Lew, T. T. S.; Wong, M. H.; Kwak, S. Y.; Sinclair, R.; Koman, V. B.; Strano, M. S. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 2018, 14, 1802086.

[11]

Nair, R.; Varghese, S. H.; Nair, B. G.; Maekawa, T.; Yoshida, Y.; Kumar, D. S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163.

[12]

Mushtaq, R.; Shahzad, K.; Shah, Z. H.; Alsamadany, H.; Alzahrani, H. A. S.; Alzahrani, Y.; Mujtaba, T.; Ahmed, Z.; Mansoor, S.; Bashir, A. Isolation of biotic stress resistance genes from cotton ( Gossypium arboreum) and their analysis in model plant tobacco ( Nicotiana tabacum) for resistance against cotton leaf curl disease complex. J. Virol. Methods 2020, 276, 113760.

[13]

Niedbała, G.; Niazian, M.; Sabbatini, P. Modeling Agrobacterium-mediated gene transformation of tobacco ( Nicotiana tabacum)-a model plant for gene transformation studies. Front. Plant Sci. 2021, 12, 695110.

[14]

De Rosa, A.; Watson-Lazowski, A.; Evans, J. R.; Groszmann, M. Genome-wide identification and characterisation of Aquaporins in Nicotiana tabacum and their relationships with other Solanaceae species. BMC Plant Biol. 2020, 20, 266.

[15]

Neethirajan, S.; Gordon, R.; Wang, L. J. Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol. 2009, 27, 461–467.

[16]

Okeke, E. S.; Nweze, E. J.; Ezike, T. C.; Nwuche, C. O.; Ezeorba, T. P. C.; Nwankwo, C. E. I. Silicon-based nanoparticles for mitigating the effect of potentially toxic elements and plant stress in agroecosystems: A sustainable pathway towards food security. Sci. Total Environ. 2023, 898, 165446.

[17]

Azeem, M.; Iqbal, N.; Kausar, S.; Javed, M. T.; Akram, M. S.; Sajid, M. A. Efficacy of silicon priming and fertigation to modulate seedling’s vigor and ion homeostasis of wheat ( Triticum aestivum L. ) under saline environment. Environ. Sci. Pollut. Res. 2015, 22, 14367–14371.

[18]

Tripathi, D. K.; Singh, V. P.; Prasad, S. M.; Chauhan, D. K.; Dubey, N. K.; Rai, A. K. Silicon-mediated alleviation of Cr (VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol. Environ. Saf. 2015, 113, 133–144.

[19]

Luyckx, M.; Hausman, J. F.; Lutts, S.; Guerriero, G. Silicon and plants: Current knowledge and technological perspectives. Front. Plant Sci. 2017, 8, 411.

[20]

Liang, S. J.; Li, Z. Q.; Li, X. J.; Xie, H. G.; Zhu, R. S.; Lin, J. X.; Xie, H. A.; Wu, H. Effects of stem structural characters and silicon content on lodging resistance in rice (Oryza sativa L.). Res. Crops 2013, 14, 621–636.

[21]

Sun, D. Q.; Hussain, H. I.; Yi, Z. F.; Rookes, J. E.; Kong, L. X.; Cahill, D. M. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 2016, 152, 81–91.

[22]

Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

[23]

Grasso, G.; Colella, F.; Forciniti, S.; Onesto, V.; Iuele, H.; Siciliano, A. C.; Carnevali, F.; Chandra, A.; Gigli, G.; del Mercato, L. L. Fluorescent nano- and microparticles for sensing cellular microenvironment: Past, present and future applications. Nanoscale Adv. 2023, 5, 4311–4336.

[24]

Shen, J. B.; Zeng, Y. L.; Zhuang, X. H.; Sun, L.; Yao, X. Q.; Pimpl, P.; Jiang, L. W. Organelle pH in the Arabidopsis endomembrane system. Mol. Plant 2013, 6, 1419–1437.

[25]

Hurth, M. A.; Suh, S. J.; Kretzschmar, T.; Geis, T.; Bregante, M.; Gambale, F.; Martinoia, E.; Neuhaus, H. E. Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol. 2005, 137, 901–910.

[26]

Yoshida, S.; Hotsubo, K.; Kawamura, Y.; Murai, M.; Arakawa, K.; Takezawa, D. Alterations of intracellular pH in response to low temperature stresses. J. Plant Res. 1999, 112, 225–236.

[27]

Masachis, S.; Segorbe, D.; Turrà, D.; Leon-Ruiz, M.; Fürst, U.; El Ghalid, M.; Leonard, G.; López-Berges, M. S.; Richards, T. A.; Felix, G. et al. Correction: Corrigendum: A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat. Microbiol. 2016, 1, 16073.

[28]

Nagao, D.; Satoh, T.; Konno, M. A generalized model for describing particle formation in the synthesis of monodisperse oxide particles based on the hydrolysis and condensation of tetraethyl orthosilicate. J. Colloid Interface Sci. 2000, 232, 102–110.

[29]
Lian, Y.; Zhang, W.; Ding, L. J.; Zhang, X. A.; Zhang, Y. L.; Wang, X. D. Nanomaterials for intracellular pH sensing and imaging. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications: A Volume in Micro and Nano Technologies. Wang, X. R.; Chen, X., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp 241–273.
[30]

Liu, Y. S.; Sun, Y. H.; Vernier, P. T.; Liang, C. H.; Chong, S. Y. C.; Gundersen, M. A. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J. Phys. Chem. C 2007, 111, 2872–2878.

[31]

Nakabayashi, H.; Yamada, A.; Noba, M.; Kobayashi, Y.; Konno, M.; Nagao, D. Electrolyte-added one-pot synthesis for producing monodisperse, micrometer-sized silica particles up to 7 μm. Langmuir 2010, 26, 7512–7515.

[32]

Kurdyukov, D. A.; Eurov, D. A.; Kirilenko, D. A.; Sokolov, V. V.; Golubev, V. G. Tailoring the size and microporosity of Stöber silica particles. Microporous Mesoporous Mater. 2018, 258, 205–210.

[33]

Muster, T. H.; Prestidge, C. A.; Hayes, R. A. Water adsorption kinetics and contact angles of silica particles. Colloids Surf. A: Physicochem Eng. Asp. 2001, 176, 253–266.

[34]

Tarasevich, Y. I.; Aksenenko, E. V. Interaction of water molecules with hydrophilic and hydrophobic surfaces of colloid particles. J. Water Chem. Technol. 2015, 37, 224–229.

[35]

Sjöberg, S. Silica in aqueous environments. J. Non-Cryst. Solids 1996, 196, 51–57.

[36]

Corsi, M.; Paghi, A.; Mariani, S.; Golinelli, G.; Debrassi, A.; Egri, G.; Leo, G.; Vandini, E.; Vilella, A.; Dähne, L. et al. Bioresorbable nanostructured chemical sensor for monitoring of pH level in vivo. Adv. Sci. 2022, 9, 2202062.

[37]

Salgado, L. E. V.; Vargas-Hernández, C. Spectrophotometric determination of the pKa, isosbestic point and equation of absorbance vs. pH for a universal pH indicator. Am. J. Analyt. Chem. 2014, 5, 1290–1301.

[38]

Han, J. Y.; Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 2010, 110, 2709–2728.

[39]

Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R. Enhanced Förster resonance energy transfer on single metal particle. 2. Dependence on donor- acceptor separation distance, particle size, and distance from metal surface. J. Phys. Chem. C 2007, 111, 11784–11792.

[40]

Muhr, V.; Würth, C.; Kraft, M.; Buchner, M.; Baeumner, A. J.; Resch-Genger, U.; Hirsch, T. Particle-size-dependent Förster resonance energy transfer from upconversion nanoparticles to organic dyes. Anal. Chem. 2017, 89, 4868–4874.

[41]

Klonis, N.; Sawyer, W. H. Spectral properties of the prototropic forms of fluorescein in aqueous solution. J. Fluoresc. 1996, 6, 147–157.

[42]

Ratajczak, K.; Stobiecka, M. Ternary interactions and energy transfer between fluorescein isothiocyanate, adenosine triphosphate, and graphene oxide nanocarriers. J. Phys. Chem. B 2017, 121, 6822–6830.

[43]

Rizzo, R.; Onesto, V.; Morello, G.; Iuele, H.; Scalera, F.; Forciniti, S.; Gigli, G.; Polini, A.; Gervaso, F.; Del Mercato, L. L. pH-sensing hybrid hydrogels for non-invasive metabolism monitoring in tumor spheroids. Mater. Today Bio. 2023, 20, 100655.

[44]

Rizzo, R.; Onesto, V.; Forciniti, S.; Chandra, A.; Prasad, S.; Iuele, H.; Colella, F.; Gigli, G.; del Mercato, L. L. A pH-sensor scaffold for mapping spatiotemporal gradients in three-dimensional in vitro tumour models. Biosens. Bioelectron. 2022, 212, 114401.

[45]

Taiz, L. The plant vacuole. J. Exp. Biol. 1992, 172, 113–122.

[46]

Morita, M.; Shitan, N.; Sawada, K.; Van Montagu, M. C. E.; Inzé, D.; Rischer, H.; Goossens, A.; Oksman-Caldentey, K. M.; Moriyama, Y.; Yazaki, K. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc. Natl. Acad. Sci. USA 2009, 106, 2447–2452.

[47]

Lins, U.; Barros, C. F.; da Cunha, C.; Costa Miguens, F. Structure, morphology, and composition of silicon biocomposites in the palm tree Syagrus coronata (Mart. ) Becc. Protoplasma 2002, 220, 89–96.

[48]

Neumann, D.; De Figueiredo, C. A novel mechanism of silicon uptake. Protoplasma 2002, 220, 0059–0067.

[49]

Bolte, S.; Talbot, C.; Boutte, Y.; Catrice, O.; Read, N. D.; Satiat-Jeunemaitre, B. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J. Micros. 2004, 214, 159–173.

[50]
Rigal, A.; Doyle, S. M.; Robert, S. Live cell imaging of FM4-64, a tool for tracing the endocytic pathways in Arabidopsis root cells. In Plant Cell Expansion: Methods and Protocols. Estevez, J. M., Ed.; Humana: New York, 2015 ; pp 93–103.
[51]

Di Sansebastiano, G. P.; Paris, N.; Marc-Martin, S.; Neuhaus, J. M. Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J. 1998, 15, 449–457.

[52]

De Caroli, M.; Manno, E.; Perrotta, C.; De Lorenzo, G.; Di Sansebastiano, G. P.; Piro, G. CesA6 and PGIP2 endocytosis involves different subpopulations of TGN-related endosomes. Front. Plant Sci. 2020, 11, 350.

[53]

Du, Y. L.; Tejos, R.; Beck, M.; Himschoot, E.; Li, H. J.; Robatzek, S.; Vanneste, S.; Friml, J. Salicylic acid interferes with clathrin-mediated endocytic protein trafficking. Proc. Natl. Acad. Sci. USA 2013, 110, 7946–7951.

[54]

Banbury, D. N.; Oakley, J. D.; Sessions, R. B.; Banting, G. Tyrphostin A23 inhibits internalization of the transferrin receptor by perturbing the interaction between tyrosine motifs and the medium chain subunit of the AP-2 adaptor complex. J. Biol. Chem. 2003, 278, 12022–12028.

[55]

Ortiz-Zapater, E.; Soriano-Ortega, E.; Marcote, M. J.; Ortiz-Masiá, D.; Aniento, F. Trafficking of the human transferrin receptor in plant cells: Effects of tyrphostin A23 and brefeldin A. Plant J. 2006, 48, 757–770.

[56]

De Caroli, M.; Lenucci, M. S.; Di Sansebastiano, G. P.; Dalessandro, G.; De Lorenzo, G.; Piro, G. Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. Plant J. 2011, 65, 295–308.

[57]

Drakakaki, G.; Robert, S.; Szatmari, A. M.; Brown, M. Q.; Nagawa, S.; Van Damme, D.; Leonard, M.; Yang, Z. B.; Girke, T.; Schmid, S. L. et al. Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 17850–17855.

[58]

Milewska-Hendel, A.; Zubko, M.; Stróż, D.; Kurczyńska, E. U. Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. Int. J. Mol. Sci. 2019, 20, 1650.

[59]

Wu, H. H.; Li, Z. H. Nano-enabled agriculture: How do nanoparticles cross barriers in plants. Plant Commun. 2022, 3, 100346.

[60]
Iuele, H.; Forciniti, S.; Onesto, V.; Colella, F.; Siciliano, A. C.; Chandra, A.; Nobile, C.; Gigli, G.; Del Mercato, L. L. Facile one pot synthesis of hybrid core-shell silica-based sensors for live imaging of dissolved oxygen and hypoxia mapping in 3D cell models. ACS Appl. Mater. Interfaces 2024 , in press, DOI: 10.1021/acsami.4c08306.
[61]

Siciliano, A. C.; Forciniti, S.; Onesto, V.; Iuele, H.; Cave, D. D.; Carnevali, F.; Gigli, G.; Lonardo, E.; del Mercato, L. L. A 3D pancreatic cancer model with integrated optical sensors for noninvasive metabolism monitoring and drug screening. Adv. Healthcare Mater. 2024, 13, 2401138.

[62]

Ojeda-Mendoza, G. J.; Contreras-Tello, H.; Rojas-Ochoa, L. F. Refractive index matching of large polydisperse silica spheres in aqueous suspensions. Colloids Surf. A: Physicochem Eng. Asp. 2018, 538, 320–326.

[63]

Leucci, M. R.; Di Sansebastiano, G. P.; Gigante, M.; Dalessandro, G.; Piro, G. Secretion marker proteins and cell-wall polysaccharides move through different secretory pathways. Planta 2007, 225, 1001–1017.

[64]

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

Nano Research
Article number: 94907201
Cite this article:
Iuele H, Curci LM, Bucciarelli A, et al. Optical ratiometric silica pH sensors unveil active transport and subcellular particle localization in protoplasts. Nano Research, 2025, 18(3): 94907201. https://doi.org/10.26599/NR.2025.94907201

629

Views

177

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 October 2024
Revised: 17 December 2024
Accepted: 18 December 2024
Published: 23 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return