Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Cation effect has emerged as a promising strategy for modulating the product distribution during the electrocatalytic CO2 reduction reaction (CO2RR). However, the strategy of solely increasing bulk cation concentration in the electrolyte to intensify cation effect at the electrode interface exacerbates carbonate formation issue. Therefore, it is crucial to achieve local cation enrichment at the electrolyte interface without increasing bulk cation concentration. Herein, we propose a "surface charge density modulation" strategy to strengthen interfacial electric field, intensifying the local cation effect at the electrode interface in a low-concentration electrolyte. We implement this strategy using leaf-like CuO nanosheets, introducing a high-curvature morphology into the catalysts. As a result, the CuO nanosheets display 3.4-fold enhancement in Faradic efficiency (FE) of multi-carbon products (C2+) compared to CuO nanospheres with low-curvature. In-situ Raman spectroscopy and control experiment varying concentration of K+ reveal the mechanism on how the cation effect and interfacial electric field influence CO2RR performance.
Chen, L. L.; Li, M. H.; Zhang, J. N. Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy. Nano Res. 2024, 17, 7880–7899.
Liu, M. J.; Zhan, L. S.; Wang, Y. C.; Zhao, X.; Wu, J.; Deng, D. N.; Jiang, J. B.; Zheng, X. R.; Lei, Y. P. Achieving integrated capture and reduction of CO2: A promising electrocatalyst. J. Mater. Sci. Technol. 2023, 165, 235–243.
Zheng, M.; Zhang, J. Y.; Wang, P. T.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Recent advances in electrocatalytic hydrogenation reactions on copper-based catalysts. Adv. Mater. 2024, 36, 2307913.
Li, Z. Y.; Wang, P.; Lyu, X.; Kondapalli, V. K. R.; Xiang, S. T.; Jimenez, J. D.; Ma, L.; Ito, T.; Zhang, T. Y.; Raj, J. et al. Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts. Nat. Chem. Eng. 2024, 1, 159–169.
Singh, M. R.; Kwon, Y.; Lum, Y.; Ager III, J. W.; Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138, 13006–13012.
Qin, X. P.; Vegge, T.; Hansen, H. A. Cation-coordinated inner-sphere CO2 electroreduction at Au-water interfaces. J. Am. Chem. Soc. 2023, 145, 1897–1905.
Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 2021, 4, 654–662.
Zi, X.; Zhou, Y. J.; Zhu, L.; Chen, Q.; Tan, Y.; Wang, X. Q.; Sayed, M.; Pensa, E.; Geioushy, R. A.; Liu, K. et al. Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi-carbon products. Angew. Chem. 2023, 135, e202309351.
Zhou, Y. J.; Liang, Y. Q.; Fu, J. W.; Liu, K.; Chen, Q.; Wang, X. Q.; Li, H. M.; Zhu, L.; Hu, J. H.; Pan, H. et al. Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction. Nano Lett. 2022, 22, 1963–1970.
Yang, B. P.; Liu, K.; Li, H. J. W.; Liu, C. X.; Fu, J. W.; Li, H. M.; Huang, J. E.; Ou, P. F.; Alkayyali, T.; Cai, C. et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles. J. Am. Chem. Soc. 2022, 144, 3039–3049.
Li, H. J. W.; Zhou, H. M.; Zhou, Y. J.; Hu, J. H.; Miyauchi, M.; Fu, J. W.; Liu, M. Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products. Chin. J. Catal. 2022, 43, 519–525.
Gu, J.; Liu, S.; Ni, W. Y.; Ren, W. H.; Haussener, S.; Hu, X. L. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 2022, 5, 268–276.
Gao, F. Y.; Hu, S. J.; Zhang, X. L.; Zheng, Y. R.; Wang, H. J.; Niu, Z. Z.; Yang, P. P.; Bao, R. C.; Ma, T.; Dang, Z. et al. High-curvature transition-metal chalcogenide nanostructures with a pronounced proximity effect enable fast and selective CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 8706–8712.
An, P. D.; Wei, L.; Li, H. J. W.; Yang, B. P.; Liu, K.; Fu, J. W.; Li, H. M.; Liu, H.; Hu, J. H.; Lu, Y. R. et al. Enhancing CO2 reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles. J. Mater. Chem. A 2020, 8, 15936–15941.
Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.
Jiang, Y. L.; Li, H. B.; Chen, C. J.; Zheng, Y.; Qiao, S. Z. Dynamic Cu0/Cu+ interface promotes acidic CO2 electroreduction. ACS Catal. 2024, 14, 8310–8316.
Chen, M. T.; Ye, Z. J.; Wei, L.; Yuan, J.; Xiao, L. H. Shining at the tips: Anisotropic deposition of Pt nanoparticles boosting hot carrier utilization for plasmon-driven photocatalysis. J. Am. Chem. Soc. 2022, 144, 12842–12849.
Wang, Q. C.; Feng, Q. G.; Lei, Y. P.; Tang, S. H.; Xu, L.; Xiong, Y.; Fang, G. Z.; Wang, Y. C.; Yang, P. Y.; Liu, J. J. et al. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 2022, 13, 3689.
Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S. Electron attraction mediated by coulomb repulsion. Nature 2016, 535, 395–400.
Behrens, H. M.; Weisenseel, M. H.; Sievers, A. Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol. 1982, 70, 1079–1083.
Ringe, S.; Clark, E. L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A. T.; Chan, K. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 2019, 12, 3001–3014.
Chen, L. D.; Urushihara, M.; Chan, K.; Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 2016, 6, 7133–7139.
Gunathunge, C. M.; Ovalle, V. J.; Waegele, M. M. Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface. Phys. Chem. Chem. Phys. 2017, 19, 30166–30172.
Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 2017, 139, 11277–11287.
Yu, H.; Weitzner, S. E.; Varley, J. B.; Wood, B. C.; Akhade, S. A. Surface engineering of copper catalyst through CO* adsorbate. J. Phys. Chem. C 2023, 127, 1789–1797.
Reitz, E.; Jia, W. Z.; Gentile, M.; Wang, Y.; Lei, Y. CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 2008, 20, 2482–2486.
Biesinger, M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334.
Ma, Z. S.; Yang, Z. L.; Lai, W. C.; Wang, Q. Y.; Qiao, Y.; Tao, H. L.; Lian, C.; Liu, M.; Ma, C.; Pan, A. L. et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 2022, 13, 7596.
Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Zhao, P. Y.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Ma, J.; Liu, J. et al. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy 2018, 53, 808–816.
Niu, Z. Z.; Gao, F. Y.; Zhang, X. L.; Yang, P. P.; Liu, R.; Chi, L. P.; Wu, Z. Z.; Qin, S.; Yu, X. X.; Gao, M. R. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 2021, 143, 8011–8021.
Tan, Z. H.; Peng, T. Y.; Tan, X. J.; Wang, W. H.; Wang, X. S.; Yang, Z. X.; Ning, H.; Zhao, Q. S.; Wu, M. B. Controllable synthesis of leaf-like CuO nanosheets for selective CO2 electroreduction to ethylene. ChemElectroChem 2020, 7, 2020–2025.
Dutta, A.; Montiel, I. Z.; Erni, R.; Kiran, K.; Rahaman, M.; Drnec, J.; Broekmann, P. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy 2020, 68, 104331.
Scholten, F.; Sinev, I.; Bernal, M.; Roldan Cuenya, B. Plasma-modified dendritic Cu catalyst for CO2 electroreduction. ACS Catal. 2019, 9, 5496–5502.
De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.
Reller, C.; Krause, R.; Volkova, E.; Schmid, B.; Neubauer, S.; Rucki, A.; Schuster, M.; Schmid, G. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 2017, 7, 1602114.
Rahaman, M.; Dutta, A.; Zanetti, A.; Broekmann, P. Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: An identical location (IL) study. ACS Catal. 2017, 7, 7946–7956.
Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P. Morphology matters: Tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 2016, 6, 3804–3814.
Zheng, K.; Hu, D. Y.; Zhang, X. W.; Xiao, X. X.; Liang, Z. J.; Wu, J. X.; Lin, D. Y.; Zhuo, L. L.; Yi, H.; Gong, L. et al. Bending two-dimensional Cu(I)-based coordination networks to inverse electrocatalytic HER/CO2RR selectivity. J. Mater. Chem. A 2024, 12, 16396–16402.
Zhong, D. Z.; Cheng, D. F.; Fang, Q.; Liu, Y.; Li, J. P.; Zhao, Q. Understanding the restructuring and degradation of oxide-derived copper during electrochemical CO2 reduction. Chem. Eng. J. 2023, 470, 143907.
Li, M. Y.; Li, T. T.; Sun, C. Y.; Li, Y. P.; Wan, P.; Qin, J. Q.; Gao, R.; Lv, Y.; Song, Y. J. Strong electric field at the sharp tips of Cu(OH)2 nanochrysanthemums for selective electrochemical CO2 conversion into ethylene. Mater. Today Energy 2024, 42, 101568.
Zhang, X. W.; Ren, B. H.; Li, H.; Liu, S. X.; Xiong, H. Y.; Dong, S. L.; Li, Y. F.; Luo, D.; Cui, Y.; Wen, G. B. et al. Regulating ethane and ethylene synthesis by proton corridor microenvironment for CO2 electrolysis. J. Energy Chem. 2023, 87, 368–377.
Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.
Huang, J. E.; Li, F. W.; Ozden, A.; Sedighian Rasouli, A.; Garcia de Arquer, F. P.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.
Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624–4633.
Li, H. F.; Wei, P. F.; Gao, D. F.; Wang, G. X. In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Curr. Opin. Green Sustain. Chem. 2022, 34, 100589.
Zhan, C.; Dattila, F.; Rettenmaier, C.; Bergmann, A.; Kühl, S.; García-Muelas, R.; López, N.; Cuenya, B. R. Revealing the CO coverage-driven C–C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via operando Raman spectroscopy. ACS Catal. 2021, 11, 7694–7701.
Yao, K. L.; Li, J.; Wang, H. B.; Lu, R. H.; Yang, X. T.; Luo, M. C.; Wang, N.; Wang, Z. Y.; Liu, C. X.; Jing, T. et al. Mechanistic insights into OC–COH coupling in CO2 electroreduction on fragmented copper. J. Am. Chem. Soc. 2022, 144, 14005–14011.
Gunathunge, C. M.; Li, J. Y.; Li, X.; Hong, J. J.; Waegele, M. M. Revealing the predominant surface facets of rough Cu electrodes under electrochemical conditions. ACS Catal. 2020, 10, 6908–6923.
Wu, H. L.; Huang, L. Q.; Timoshenko, J.; Qi, K.; Wang, W. S.; Liu, J. F.; Zhang, Y.; Yang, S. K.; Petit, E.; Flaud, V. et al. Selective and energy-efficient electrosynthesis of ethylene from CO2 by tuning the valence of Cu catalysts through aryl diazonium functionalization. Nat. Energy 2024, 9, 422–433.
Lambert, D. K. Vibrational stark effect of adsorbates at electrochemical interfaces. Electrochim. Acta 1996, 41, 623–630.
Li, J. Y.; Li, X.; Gunathunge, C. M.; Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl. Acad. Sci USA 2019, 116, 9220–9229.
Chernyshova, I. V.; Somasundaran, P.; Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci USA 2018, 115, e9261–e9270.
Malkani, A. S.; Li, J.; Oliveira, N. J.; He, M.; Chang, X.; Xu, B.; Lu, Q. Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 2020, 6, eabd2569.
Hou, J. J.; Chang, X. X.; Li, J.; Xu, B. J.; Lu, Q. Correlating CO coverage and CO electroreduction on Cu via high-pressure in situ spectroscopic and reactivity investigations. J. Am. Chem. Soc. 2022, 144, 22202–22211.
Gunathunge, C. M.; Li, J. Y.; Li, X.; Waegele, M. M. Surface-adsorbed CO as an infrared probe of electrocatalytic interfaces. ACS Catal. 2020, 10, 11700–11711.
Chang, X. X.; Xiong, H. C.; Lu, Q.; Xu, B. J. Mechanistic implications of low CO coverage on cu in the electrochemical CO and CO2 reduction reactions. JACS Au 2023, 3, 2948–2963.
Xiong, H. C.; Sun, Q. W.; Chen, K. D.; Xu, Y. F.; Chang, X. X.; Lu, Q.; Xu, B. J. Correlating the experimentally determined CO adsorption enthalpy with the electrochemical CO reduction performance on Cu surfaces. Angew. Chem., Int. Ed. 2023, 62, e202218447.
Chang, X. X.; Li, J.; Xiong, H. C.; Zhang, H. C.; Xu, Y. F.; Xiao, H.; Lu, Q.; Xu, B. J. C–C coupling is unlikely to be the rate-determining step in the formation of C2+ products in the copper-catalyzed electrochemical reduction of CO. Angew. Chem. 2022, 134, e202111167.
Lee, S. Y.; Kim, J.; Bak, G.; Lee, E.; Kim, D.; Yoo, S.; Kim, J.; Yun, H.; Hwang, Y. J. Probing cation effects on *CO intermediates from electroreduction of CO2 through operando Raman spectroscopy. J. Am. Chem. Soc. 2023, 145, 23068–23075.
992
Views
209
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).