AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (40.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Microneedle-delivered biomimetic nanodecoys target type IV collagen and scavenge multiple cytokines to alleviate psoriatic inflammation

Fei Qu1Jinying Qin1Min Li1Yuting Xia2Yihui Wang3Hongmei Liu1Juan Tao2Yijing Liu1,4 ( )Jintao Zhu1
Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
Show Author Information

Graphical Abstract

This article successfully constructed multi-cytokine-scavenging and extracellular matrix-anchoring nanodecoy integrated microneedle (MN) delivery system to achieve tissue-specific resolution of inflammation. Upon MN delivery, the nanodecoys exhibited significantly enhanced skin retention and multiple cytokines scavenging capability.

Abstract

The immunomodulatory efficacy of current psoriasis biological therapies is hindered by their limited ability to scavenge multiple cytokines, inefficient delivery to specific inflamed skin regions, and potential side effects. Upon analyzing samples from both patients and mice, we identify a significant increase in type IV collagen within the extracellular matrix (ECM) of psoriatic skin. Thus, we report the microneedle (MN) delivery of type IV collagen targeting peptide-modified dual-cell membrane biomimetic nanodecoys (CRHM@lip) with multiple cytokines scavenging ability for treating psoriasis. The CRHM@lip can scavenge both tumor necrosis factor-α (TNF-α) and interleukin (IL)-17. Upon MN delivery, the nanodecoys target ECM and exhibit skin retention for over 120 h. The treatment by CRHM@lip-integrated MNs reduces skin thickness in mice by 57.9% and shows decreased levels of TNF-α, IL-17, IL-23, and interferon (IFN)-γ in skin sections compared to the psoriasis group. Additionally, the CRHM@lip treatment reduces the CD4+ T cells, M1 macrophages, and dendritic cells in the spleen, and suppresses various inflammatory mediators in serum, significantly demonstrating immunological microenvironmental suppression. Compared to systemic administration routes, MN delivery improves treatment outcomes. No noticeable adverse effects on hepatic and renal functions are observed in mice after treatment. This approach enhances the effectiveness of biological therapies and has the potential for translation.

Electronic Supplementary Material

Download File(s)
7199_ESM.pdf (11 MB)

References

[1]

Griffiths, C. E. M.; Armstrong, A. W.; Gudjonsson, J. E.; Barker, J. N. W. N. Psoriasis. Lancet 2021, 397, 1301–1315.

[2]

Greb, J. E.; Goldminz, A. M.; Elder, J. T.; Lebwohl, M. G.; Gladman, D. D.; Wu, J. J.; Mehta, N. N.; Finlay, A. Y.; Gottlieb, A. B. Psoriasis. Nat. Rev. Dis. Primers 2016, 2, 16082.

[3]

Qu, F.; Geng, R.; Liu, Y. J.; Zhu, J. T. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 2022, 12, 3372–3406.

[4]

Burkett, P. R.; Kuchroo, V. K. IL-17 blockade in psoriasis. Cell 2016, 167, 1669.

[5]

Ratner, M. IL-17-targeting biologics aim to become standard of care in psoriasis. Nat. Biotechnol. 2015, 33, 3–4.

[6]

Boyman, O.; Hefti, H. P.; Conrad, C.; Nickoloff, B. J.; Suter, M.; Nestle, F. O. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 2004, 199, 731–736.

[7]

Conrad, C.; Di Domizio, J.; Mylonas, A.; Belkhodja, C.; Demaria, O.; Navarini, A. A.; Lapointe, A. K.; French, L. E.; Vernez, M.; Gilliet, M. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis. Nat. Commun. 2018, 9, 25.

[8]

Chiricozzi, A.; Guttman-Yassky, E.; Suárez-Fariñas, M.; Nograles, K. E.; Tian, S. Y.; Cardinale, I.; Chimenti, S.; Krueger, J. G. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J. Invest. Dermatol. 2011, 131, 677–687.

[9]

Erichsen, C. Y.; Jensen, P.; Kofoed, K. Biologic therapies targeting the interleukin (IL)-23/IL-17 immune axis for the treatment of moderate-to-severe plaque psoriasis: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 30–38.

[10]

Reich, K.; Gooderham, M.; Thaçi, D.; Crowley, J. J.; Ryan, C.; Krueger, J. G.; Tsai, T. F.; Flack, M.; Gu, Y. H.; Williams, D. A. et al. Risankizumab compared with adalimumab in patients with moderate-to-severe plaque psoriasis (IMMvent): A randomised, double-blind, active-comparator-controlled phase 3 trial. Lancet 2019, 394, 576–586.

[11]

Lebwohl, M.; Strober, B.; Menter, A.; Gordon, K.; Weglowska, J.; Puig, L.; Papp, K.; Spelman, L.; Toth, D.; Kerdel, F. et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N. Engl. J. Med. 2015, 373, 1318–1328.

[12]

Rao, L.; Tian, R.; Chen, X. Y. Cell-membrane-mimicking nanodecoys against infectious diseases. ACS Nano 2020, 14, 2569–2574.

[13]

Zhou, Y.; Deng, Y. K.; Liu, Z. M.; Yin, M. Y.; Hou, M. Y.; Zhao, Z. Y.; Zhou, X. Z.; Yin, L. C. Cytokine-scavenging nanodecoys reconstruct osteoclast/osteoblast balance toward the treatment of postmenopausal osteoporosis. Sci. Adv. 2021, 7, eabl6432.

[14]

Hou, M. Y.; Wei, Y. S.; Zhao, Z. Y.; Han, W. Q.; Zhou, R. X.; Zhou, Y.; Zheng, Y. R.; Yin, L. C. Immuno-engineered nanodecoys for the multi-target anti-inflammatory treatment of autoimmune diseases. Adv. Mater. 2022, 34, 2108817.

[15]

Wang, H. L.; Liu, H. W.; Li, J.; Liu, C. Y.; Chen, H.; Li, J. Y.; Sun, C. Y.; Guo, T.; Pang, Z. Q.; Zhang, B. et al. Cytokine nanosponges suppressing overactive macrophages and dampening systematic cytokine storm for the treatment of hemophagocytic lymphohistiocytosis. Bioact. Mater. 2023, 21, 531–546.

[16]

Duan, Y. O.; Zhang, E.; Fang, R. H.; Gao, W. W.; Zhang, L. F. Capsulated cellular nanosponges for the treatment of experimental inflammatory bowel disease. ACS Nano 2023, 17, 15893–15904.

[17]

Meng, Q. F.; Tai, W. B.; Tian, M. Y.; Zhuang, X. Y.; Pan, Y. W.; Lai, J. L.; Xu, Y. T.; Xu, Z. Q.; Li, M.; Zhao, G. Y. et al. Inhalation delivery of dexamethasone with iSEND nanoparticles attenuates the COVID-19 cytokine storm in mice and nonhuman primates. Sci. Adv. 2023, 9, eadg3277.

[18]

Thamphiwatana, S.; Angsantikul, P.; Escajadillo, T.; Zhang, Q. Z.; Olson, J.; Luk, B. T.; Zhang, S.; Fang, R. H.; Gao, W. W.; Nizet, V. et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc. Natl. Acad. Sci. USA 2017, 114, 11488–11493.

[19]

Rao, L.; Xia, S.; Xu, W.; Tian, R.; Yu, G. C.; Gu, C. J.; Pan, P.; Meng, Q. F.; Cai, X.; Qu, D. et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc. Natl. Acad. Sci. USA 2020, 117, 27141–27147.

[20]

Zhou, X.; Chen, Y. D.; Cui, L.; Shi, Y. L.; Guo, C. Y. Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis. 2022, 13, 81.

[21]

Yamauchi, P. S.; Bissonnette, R.; Teixeira, H. D.; Valdecantos, W. C. Systematic review of efficacy of anti-tumor necrosis factor (TNF) therapy in patients with psoriasis previously treated with a different anti-TNF agent. J. Am. Acad. Dermatol. 2016, 75, 612–618.e6.

[22]

Schett, G.; Neurath, M. F. Resolution of chronic inflammatory disease: Universal and tissue-specific concepts. Nat. Commun. 2018, 9, 3261.

[23]

Than, A.; Zan, P.; Chen, P. Transdermal theranostics. VIEW 2020, 1, e21.

[24]

Ali, M.; Namjoshi, S.; Benson, H. A. E.; Kumeria, T.; Mohammed, Y. Skin biomechanics: Breaking the dermal barriers with microneedles. Nano TransMed 2022, 1, 9130002.

[25]

Yang, L.; Zhang, D.; Li, W. J.; Lin, H. B.; Ding, C. D.; Liu, Q. Y.; Wang, L. L.; Li, Z. M.; Mei, L.; Chen, H. Z. et al. Biofilm microenvironment triggered self-enhancing photodynamic immunomodulatory microneedle for diabetic wound therapy. Nat. Commun. 2023, 14, 7658.

[26]

Li, M. C.; Yang, L.; Wang, C. C.; Cui, M. T.; Wen, Z. Y.; Liao, Z. H.; Han, Z. R.; Zhao, Y. G.; Lang, B.; Chen, H. Z. et al. Rapid induction of long-lasting systemic and mucosal immunity via thermostable microneedle-mediated chitosan oligosaccharide-encapsulated DNA nanoparticles. ACS Nano 2023, 17, 24200–24217.

[27]

Yi, Y.; Yang, Z. H.; Zhou, C. C.; Yang, Y. Q.; Wu, Y. P.; Zhang, Q. Quercetin-encapsulated GelMa hydrogel microneedle reduces oxidative stress and facilitates wound healing. Nano TransMed 2024, 3, 100030.

[28]

Ma, W. J.; Zhang, X. X.; Liu, Y. X.; Fan, L.; Gan, J. J.; Liu, W. L.; Zhao, Y. J.; Sun, L. Y. Polydopamine decorated microneedles with Fe-MSC-derived nanovesicles encapsulation for wound healing. Adv. Sci. 2022, 9, 2103317.

[29]

Zhu, J. X.; Zhou, X. W.; Kim, H. J.; Qu, M. Y.; Jiang, X.; Lee, K.; Ren, L.; Wu, Q. Z.; Wang, C. R.; Zhu, X. M. et al. Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid. Small 2020, 16, 1905910.

[30]

Chen, G. J.; Chen, Z. T.; Wen, D.; Wang, Z. J.; Li, H. J.; Zeng, Y.; Dotti, G.; Wirz, R. E.; Gu, Z. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc. Natl. Acad. Sci. USA 2020, 117, 3687–3692.

[31]

Zhao, Z. Q.; Chen, B. Z.; Gan, J. L.; Feng, Y. H.; Liang, L.; Yu, L. Y.; Wang, Z. Y.; Abbaszadeh, S.; Shahbazi, M. A.; Yu, R. X. et al. Dual-functional microneedle with programmatic regulation of macrophage for autoimmune psoriasis treatment. Nano Res. 2024, 17, 7436–7448.

[32]

Wang, Y.; Zhang, X. X.; Chen, G. P.; Lu, M. H.; Zhao, Y. J. Multifunctional structural color triboelectric microneedle patches for psoriasis treatment. Matter 2023, 6, 1555–1568.

[33]

Zhang, W. T.; Chen, Y. X.; Zhao, Z. J.; Zheng, H. Q.; Wang, S. Q.; Liao, Z. Y.; Sheng, T.; Zhao, S.; Hou, W. H.; Yu, X. M. et al. Adoptive Treg therapy with metabolic intervention via perforated microneedles ameliorates psoriasis syndrome. Sci. Adv. 2023, 9, eadg6007.

[34]

Wu, D.; Shou, X.; Yu, Y. R.; Wang, X. C.; Chen, G. P.; Zhao, Y. J.; Sun, L. Y. Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv. Funct. Mater. 2022, 32, 2205847.

[35]

Wang, H.; Fu, Y. X.; Liu, P.; Qu, F.; Du, S.; Li, Y.; Du, H. Y.; Zhang, L. B.; Tao, J.; Zhu, J. T. Supramolecular dissolving microneedle patch loading hydrophobic glucocorticoid for effective psoriasis treatment. ACS Appl. Mater. Interfaces 2023, 15, 15162–15171.

[36]

Du, H. Y.; Yang, J.; Xia, Y.; Li, Y. T.; Zhu, J. T.; Zhang, L. B.; Tao, J. A. Microneedle-assisted percutaneous delivery of methotrexate-loaded nanoparticles enabling sustained anti-inflammatory effects in psoriasis therapy. J. Mater. Chem. B 2024, 12, 2618–2627.

[37]

Du, H. Y.; Liu, P.; Zhu, J. J.; Lan, J. J.; Li, Y.; Zhang, L. B.; Zhu, J. T.; Tao, J. Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl. Mater. Interfaces 2019, 11, 43588–43598.

[38]

Au, K. M.; Hyder, S. N.; Wagner, K.; Shi, C. H.; Kim, Y. S.; Caster, J. M.; Tian, X.; Min, Y. Z.; Wang, A. Z. Direct observation of early-stage high-dose radiotherapy-induced vascular injury via basement membrane-targeting nanoparticles. Small 2015, 11, 6404–6410.

[39]
Macário-Soares, A.; Sousa-Oliveira, I.; Correia, M.; Pires, P. C.; Sharma, A.; Jha, N. K.; Zare, E. N.; Veiga, F.; Jaswanth Gowda, B. H.; Borzacchiello, A. et al. Cell membrane and extracellular vesicle membrane-coated nanoparticles: An envisaged approach for the management of skin conditions. VIEW, in press, https://doi.org/10.1002/VIW.20240043.
[40]

Qu, F.; Sun, Y. F.; Bi, D. H.; Peng, S. Y.; Li, M.; Liu, H. M.; Zhang, L. B.; Tao, J.; Liu, Y. J.; Zhu, J. T. Regulating size and charge of liposomes in microneedles to enhance intracellular drug delivery efficiency in skin for psoriasis therapy. Adv. Healthcare Mater. 2023, 12, 2302314.

[41]

Wang, D. D.; Dong, H. F.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W. H.; Wang, C. T.; Zhang, X. J. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 2018, 12, 5241–5252.

[42]

Bhattacharjee, O.; Ayyangar, U.; Kurbet, A. S.; Ashok, D.; Raghavan, S. Unraveling the ECM-immune cell crosstalk in skin diseases. Front. Cell Dev. Biol. 2019, 7, 68.

[43]

Uitto, J.; Olsen, D. R.; Fazio, M. J. Extracellular matrix of the skin: 50 years of progress. J. Invest. Dermatol. 1989, 92, S61–S77.

Nano Research
Article number: 94907199
Cite this article:
Qu F, Qin J, Li M, et al. Microneedle-delivered biomimetic nanodecoys target type IV collagen and scavenge multiple cytokines to alleviate psoriatic inflammation. Nano Research, 2025, 18(3): 94907199. https://doi.org/10.26599/NR.2025.94907199

492

Views

73

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 September 2024
Revised: 12 November 2024
Accepted: 16 December 2024
Published: 18 February 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return