AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Atomically synergistic bimetallic pair sites in a dual-cluster-based MOF for ultrafast degradation of chemical warfare agent simulants

Zhi-Bing Sun1,2Qian-You Wang1Cai Li1Man Cao1Jing-Zheng Zhang1 ( )Jie Wu1 ( )
Henan Key Laboratory of Special Functional Molecular Materials, Ministry of Education, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Zhengzhou Research Institute, Beijing Institute of Technology, Zhengzhou 450000, China
Show Author Information

Graphical Abstract

The achievement of metal cluster stabilization and the generation of synergistic bimetallic pair sites with synergistic catalytic effects were made possible simultaneously by exchanging size-matched polyoxometalate (POM) metal clusters (MnMo6-lg) into the metal-organic framework (MOF) framework (PCN-601). This strategy endows MnMo6-lg-PCN-601 with excellent catalytic activity for sulfur mustard simulant 2-chloroethyl ethyl sulfide (CEES) degradation (t1/2 < 1 min, TOF = 140 min−1).

Abstract

Metal clusters represent a promising class of catalysts for various reactions, but the simultaneous improvement of their stability and catalytic activity is a longstanding challenge. Herein, we created a stable dual-cluster metal-organic framework (MOF) that featured atomically synergistic bimetallic pair sites colocalized within sub-nanometer pockets. The pair sites, consisting of Ni and Mo sites respectively originating from defective MOF and Polyoxometalate (POM) clusters, were rationally constructed by size-matched ligand exchange. The as-obtained dual-cluster MOF (MnMo6-lg-PCN-601) exhibited superior catalytic activity, rate performance (t1/2 < 1 min, TOF = 140 min−1), and stability toward the degradation of the chemical warfare agent simulant 2-chloroethyl ethyl sulfide (CEES). In-situ Fourier transform infrared (FTIR) studies and density functional theory (DFT) calculations demonstrated that the atomic synergy between colocalized pair sites favored the adsorption and activation of the CEES substrate, moreover, it also promoted H2O2 decomposition for the selective oxidation of CEES. Our work opens a new avenue for the construction of stable metal clusters with high catalytic activity for application in various multi-substrate reactions.

Electronic Supplementary Material

Download File(s)
7196_ESM.pdf (1.8 MB)

References

[1]

Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.

[2]

Cao, M.; Pang, R.; Wang, Q. Y.; Han, Z.; Wang, Z. Y.; Dong, X. Y.; Li, S. F.; Zang, S. Q.; Mak, T. C. W. Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant. J. Am. Chem. Soc. 2019, 141, 14505–14509.

[3]

Ling, C. C.; Liu, X. F.; Li, H.; Wang, X. B.; Gu, H. Y.; Wei, K.; Li, M. Q.; Shi, Y. B.; Ben, H. J.; Zhan, G. M. et al. Atomic-layered Cu5 nanoclusters on FeS2 with dual catalytic sites for efficient and selective H2O2 activation. Angew. Chem., Int. Ed. 2022, 61, e202200670.

[4]

Liu, Y. J.; Sun, Y. F.; Shen, S. H.; Wang, S. T.; Liu, Z. H.; Fang, W. H.; Wright, D. S.; Zhang, J. Water-stable porous Al24 archimedean solids for removal of trace iodine. Nat. Commun. 2022, 13, 6632.

[5]

Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421.

[6]

Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.

[7]

Liu, X.; Xu, W. W.; Huang, X. Y.; Wang, E. D.; Cai, X.; Zhao, Y.; Li, J.; Xiao, M.; Zhang, C. F.; Gao, Y. et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349.

[8]

Luo, X. M.; Li, Y. K.; Dong, X. Y.; Zang, S. Q. Platonic and archimedean solids in discrete metal-containing clusters. Chem. Soc. Rev. 2023, 52, 383–444.

[9]

Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.

[10]

Liu, Q. D.; Zhang, Q. H.; Shi, W. X.; Hu, H. S.; Zhuang, J.; Wang, X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 2022, 14, 433.

[11]

Li, Z.; Zhang, Z. H.; Hu, H. S.; Liu, Q. D.; Wang, X. Synthesis of two-dimensional polyoxoniobate-based clusterphenes with in-plane electron delocalization. Nat. Synth. 2023, 2, 989–997.

[12]

Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y. F.; Liu, J.; Li, S. L.; Lan, Y. Q. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 2022, 13, 4681.

[13]

Hu, B.; Wen, W. Y.; Sun, H. Y.; Wang, Y. Q.; Du, K. Z.; Ma, W.; Zou, G. D.; Wu, Z. F.; Huang, X. Y. Single-crystal superstructures via hierarchical assemblies of giant rubik's cubes as tertiary building units. Angew. Chem., Int. Ed. 2023, 16, e202219025.

[14]

Nematulloev, S.; Sagadevan, A.; Alamer, B.; Shkurenko, A.; Huang, R. W.; Yin, J.; Dong, C. W.; Yuan, P.; Yorov, K. E.; Karluk, A. A. et al. Atomically precise defective copper nanocluster catalysts for highly selective C–C cross-coupling reactions. Angew. Chem., Int. Ed. 2023, 62, e202303572.

[15]

Xu, W. L.; Zhang, Y. W.; Wang, J. J.; Xu, Y. X.; Bian, L.; Ju, Q.; Wang, Y. M.; Fang, Z. L. Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass. Nat. Commun. 2022, 13, 2068.

[16]

Zhong, D. C.; Gong, Y. N.; Zhang, C.; Lu, T. B. Dinuclear metal synergistic catalysis for energy conversion. Chem. Soc. Rev. 2023, 52, 3170–3214.

[17]

Enserink, M. Taps special labs to investigate Syrian attack. Science. 2013, 341, 1050–1051.

[18]

Smith, B. M. Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev. 2008, 37, 470–478.

[19]

Seo, J. Y.; Lee, J. H.; Cho, K. Y.; Jeong, K.; Baek, K. Y. Sustainable and highly reactive nerve-agent simulant detoxification: Effective amine buffers for metal-organic framework catalysts. Chem. Mater. 2023, 35, 1624–1632.

[20]

Wang, Z. J.; Wu, Y. T.; Zhang, Z. G.; Sheng, X. R.; Fang, S.; Liu, Y.; Gong, Y. D.; Wang, M. B.; Song, N.; Huang, F. H. A pillar[5]arene-containing metal-organic framework for rapid and highly capable adsorption of a mustard gas simulant. J. Am. Chem. Soc. 2024, 146, 23330–23337.

[21]

Lee, S.; Hur, S.; Jeong, K.; Hwang, H.; Choi, J.; Khaorapapong, N.; Baek, K. Y.; Seo, J. Y.; Yamauchi, Y.; Na, J. Robust surface coating materials for chemical warfare agent simulant detoxification using ladder-like poly(silsesquioxane) and metal-organic framework composites. J. Mater. Chem. A 2024, 12, 31386–31395.

[22]

Chang, J. N.; Zhang, M.; Gao, G. K.; Lu, M.; Wang, Y. R.; Jiang, C.; Li, S. L.; Chen, Y. F.; Lan, Y. Q. Construction of an electron bridge in polyoxometalates/graphene oxide ultrathin nanosheets to boost the lithium storage performance. Energy Fuels 2020, 34, 16968–16977.

[23]

Xu, W. T.; Pei, X. K.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc. 2019, 141, 17522–17526.

[24]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[25]

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

[26]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[27]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[28]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[29]

Wang, K. C.; Lv, X. L.; Feng, D. W.; Li, J.; Chen, S. M.; Sun, J. L.; Song, L.; Xie, Y. B.; Li, J. R.; Zhou, H. C. Pyrazolate-based porphyrinic metal-organic framework with extraordinary base-resistance. J. Am. Chem. Soc. 2016, 138, 914–919.

[30]

Li, X. X.; Wang, Y. X.; Wang, R. H.; Cui, C. Y.; Tian, C. B.; Yang, G. Y. Designed assembly of heterometallic cluster organic frameworks based on Anderson-type polyoxometalate clusters. Angew. Chem., Int. Ed. 2016, 55, 6462–6466.

[31]

Li, X. C.; Meng, Y.; Li, W. P.; Zhang, J.; Dang, C. Q.; Wang, H. Y.; Hung, S. W.; Fan, R.; Chen, F. R.; Zhao, S. J. et al. Multislip-enabled morphing of all-inorganic perovskites. Nat. Mater. 2023, 22, 1175–1181.

[32]

Fu, Y.; Yao, Y. F.; Forse, A. C.; Li, J. H.; Mochizuki, K.; Long, J. R.; Reimer, J. A.; De Paëpe, G.; Kong, X. Q. Solvent-derived defects suppress adsorption in MOF-74. Nat. Commun. 2023, 14, 2386.

[33]

Yi, X. F.; Ko, H. H.; Deng, F.; Liu, S. B.; Zheng, A. M. Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nat. Protoc. 2020, 15, 3527–3555.

[34]

Kreissl, H. T.; Li, M. M. J.; Peng, Y. K.; Nakagawa, K.; Hooper, T. J. N.; Hanna, J. V.; Shepherd, A.; Wu, T. S.; Soo, Y. L.; Tsang, S. C. E. Structural studies of bulk to nanosize niobium oxides with correlation to their acidity. J. Am. Chem. Soc. 2017, 139, 12670–12680.

[35]
Zheng, A. M.; Liu, S. B.; Deng, F. 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts. Chem. Rev. 2017, 117, 12475–12531.
[36]

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

[37]

Wang, X. F.; Andrews, L. Contrasting products in the reactions of Cr, Mo, and W atoms with H2O2: Argon matrix infrared spectra and theoretical calculations. J. Phys. Chem. A 2006, 110, 10409–10418.

[38]

Maksimchuk, N. V.; Maksimov, G. M.; Evtushok, V. Y.; Ivanchikova, I. D.; Chesalov, Y. A.; Maksimovskaya, R. I.; Kholdeeva, O. A.; Solé-Daura, A.; Poblet, J. M.; Carbó, J. J. Relevance of protons in heterolytic activation of H2O2 over Nb(V): Insights from model studies on Nb-substituted polyoxometalates. ACS Catal. 2018, 8, 9722–9737.

[39]

Xi, Z. W.; Zhou, N.; Sun, Y.; Li, K. L. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 2001, 292, 1139–1141.

[40]

Dang, Y.; Wang, G. T.; Su, G. H.; Lu, Z. W.; Wang, Y. Y.; Liu, T.; Pu, X.; Wang, X. X.; Wu, C.; Song, C. et al. Rational construction of a Ni/CoMoO4 heterostructure with strong Ni–O–Co bonds for improving multifunctional nanozyme activity. ACS Nano 2022, 16, 4536–4550.

[41]

Antonova, N. S.; Carbó, J. J.; Kortz, U.; Kholdeeva, O. A.; Poblet, J. M. Mechanistic insights into alkene epoxidation with H2O2 by Ti- and other TM-containing polyoxometalates: Role of the metal nature and coordination environment. J. Am. Chem. Soc. 2010, 132, 7488–7497.

[42]

Benseghier, S. A.; Bennabi, F.; Ercan, I.; Nehmar, H.; Khane, Y.; Moulayat, N.; Ercan, F.; Kayed, T.; Adjdir, M. Low-Cost synthesis of Ag-doped NiO thin films: Their structural, optical, photocatalytic and antimicrobial properties. Inorg. Chem. Commun. 2024, 159, 111787.

[43]

Kubis, C.; Profir, I.; Fleischer, I.; Baumann, W.; Selent, D.; Fischer, C.; Spannenberg, A.; Ludwig , R.; Hess, D.; Franke, R. et al. In situ FTIR and NMR spectroscopic investigations on ruthenium-based catalysts for alkene hydroformylation. Chem.—Eur. J. 2016, 22, 2746–2757.

[44]

Zhang, H. W.; Itoi, T.; Konishi, T.; Izumi, Y. Efficient and selective interplay revealed: CO2 reduction to CO over ZrO2 by light with further reduction to methane over Ni0 by heat converted from light. Angew. Chem., Int. Ed. 2021, 60, 9045–9054.

[45]

Dong, J.; Lv, H. J.; Sun, X. R.; Wang, Y.; Ni, Y. M.; Zou, B.; Zhang, N.; Yin, A. X.; Chi, Y. N.; Hu, C. W. A versatile self-detoxifying material based on immobilized polyoxoniobate for decontamination of chemical warfare agent simulants. Chem.—Eur. J. 2018, 24, 19208–19215.

[46]

Zhang, Z.; Liu, Y. W.; Tian, H. R.; Ma, X. J.; Yue, Q.; Sun, Z. X.; Lu, Y.; Liu, S. X. Hierarchically ordered macro-microporous polyoxometalate-based metal-organic framework single crystals. ACS Nano 2021, 15, 16581–16588.

[47]

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

[48]

Buru, C. T.; Wasson, M. C.; Farha, O. K. H5PV2Mo10O40 polyoxometalate encapsulated in NU-1000 metal-organic framework for aerobic oxidation of a mustard gas simulant. ACS Appl. Nano Mater. 2020, 3, 658–664.

[49]

Buru, C. T.; Li, P.; Mehdi, B. L.; Dohnalkova, A.; Platero-Prats, A. E.; Browning, N. D.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. Adsorption of a catalytically accessible polyoxometalate in a mesoporous channel-type metal-organic framework. Chem. Mater. 2017, 29, 5174–5181.

Nano Research
Article number: 94907196
Cite this article:
Sun Z-B, Wang Q-Y, Li C, et al. Atomically synergistic bimetallic pair sites in a dual-cluster-based MOF for ultrafast degradation of chemical warfare agent simulants. Nano Research, 2025, 18(2): 94907196. https://doi.org/10.26599/NR.2025.94907196
Topics:

592

Views

142

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 October 2024
Revised: 09 December 2024
Accepted: 16 December 2024
Published: 15 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return