AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (42.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ligand engineering of Co-MOF-74 with hexaaminotriphenylene for enhanced oxygen reduction reaction in zinc-air batteries

Wei LiuYu LiangMengtian HuoNan MaKaichi QinJinfa ChangZihao Xing ( )
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
Show Author Information

Graphical Abstract

The Co–O5–N active sites were well-designed in the Co-MOF-74-HATP (MOF: metal-organic framework and HATP: hexaaminotriphenylene) catalyst through ligand engineering without pyrolysis treatment, which significantly boosted the oxygen reduction reaction activity and performance of zinc-air batteries.

Abstract

Zinc-air batteries hold great promise as a next-generation efficient and environmentally friendly energy technology. However, the sluggish kinetics of the oxygen reduction reaction (ORR) process pose a significant challenge to their development. To address this issue, atom dispersion catalysts are developed to maximize the utilization of metal active centers. Metal-organic frameworks (MOFs) are a series of molecular materials with high atomic-level dispersion metal utilization, but they often lack sufficient electrical conductivity. Their application in MOF electrocatalysis remains limited unless the MOF material is transferred to a carbon-based material through heat treatment. To overcome this limitation, we employed coordination engineering to incorporate hexaaminotriphenylene (HATP) molecules with strong conjugation into Co-MOF-74. The resulting Co-MOF-74-HATP catalyst represents high activity, achieving an ORR half-wave potential (E1/2) of 0.84 V and demonstrating good stability (ΔE1/2 = 20 mV after 10,000 cycles). Additionally, the Co-MOF-74-HATP also performs a 320 mV overpotential (10 mA·cm−2) for the oxygen evolution reaction. Meanwhile, Co-MOF-74-HATP displays a peak power density of 96.6 mW·cm−2 in zinc-air batteries, surpassing the commercially available Pt/C + RuO2. This work presents a new pathway to design MOF-based ORR catalysts and provides a new direction for the preparation of key materials for zinc-air battery (ZAB).

Electronic Supplementary Material

Download File(s)
7195_ESM.pdf (2 MB)

References

[1]

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

[2]

Whitesides, G. M.; Crabtree, G. W. Don't forget long-term fundamental research in energy. Science 2007, 315, 796–798.

[3]

Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

[4]

Zhao, X.; Takao, S.; Yoshida, Y.; Kaneko, T.; Gunji, T.; Higashi, K.; Uruga, T.; Iwasawa, Y. Roles of structural defects in polycrystalline platinum nanowires for enhanced oxygen reduction activity. Appl. Catal. B: Environ. 2023, 324, 122268.

[5]

Du, L.; Lv, M.; Zhang, J.; Song, H.; Dang, D.; Liu, Q.; Cui, Z.; Liao, S. Robust InNCo3− x Mn x nitride-supported Pt nanoparticles as high-performance bifunctional electrocatalysts for Zn-air batteries. ACS Appl. Energy Mater. 2020, 3, 5293–5300.

[6]

Tao, L.; Wang, K.; Lv, F.; Mi, H. T.; Lin, F. X.; Luo, H.; Guo, H. Y.; Zhang, Q. H.; Gu, L.; Luo, M. C. et al. Precise synthetic control of exclusive ligand effect boosts oxygen reduction catalysis. Nat. Commun. 2023, 14, 6893.

[7]

Hu, L. Y.; Dai, C. L.; Chen, L. W.; Zhu, Y. H.; Hao, Y. C.; Zhang, Q. H.; Gu, L.; Feng, X.; Yuan, S.; Wang, L. et al. Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 27324–27329.

[8]

Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

[9]

Zhao, W. Y.; Chi, B.; Liang, L. C.; Yang, P. F.; Zhang, W.; Ge, X.; Wang, L. M.; Cui, Z. M.; Liao, S. J. Optimizing the electronic structure of ordered Pt–Co–Ti ternary intermetallic catalyst to boost acidic oxygen reduction. ACS Catal. 2022, 12, 7571–7578.

[10]

Lin, F. X.; Lv, F.; Zhang, Q. H.; Luo, H.; Wang, K.; Zhou, J. H.; Zhang, W. Y.; Zhang, W. S.; Wang, D. W.; Gu, L. et al. Local coordination regulation through tuning atomic-scale cavities of Pd metallene toward efficient oxygen reduction electrocatalysis. Adv. Mater. 2022, 34, 2202084.

[11]

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

[12]

Yang, H.; Liu, Y. F.; Liu, X. L.; Wang, X. K.; Tian, H.; Waterhouse, G. I. N.; Kruger, P. E.; Telfer, S. G.; Ma, S. Q. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2022, 2, 227–234.

[13]

Gao, L.; Song, Y.; Xu, X. B.; Li, C.; Hu, C. Q. Mn-modified nitrogen-doped Pt-based electrocatalyst for efficient oxygen reduction in aluminum-air batteries. Nano Res. 2024, 17, 7126–7135.

[14]

Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.

[15]

Zhao, J. J.; Fu, C. H.; Ye, K.; Liang, Z.; Jiang, F. L.; Shen, S. Y.; Zhao, X. R.; Ma, L.; Shadike, Z.; Wang, X. M. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 2022, 13, 685.

[16]

Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.

[17]

Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677–10682.

[18]

Liu, X. H.; Hu, W. L.; Jiang, W. J.; Yang, Y. W.; Niu, S.; Sun, B.; Wu, J.; Hu, J. S. Well-defined metal-O6 in metal-catecholates as a novel active site for oxygen electroreduction. ACS Appl. Mater. Interfaces 2017, 9, 28473–28477.

[19]

Lian, Y. B.; Yang, W. J.; Zhang, C. F.; Sun, H.; Deng, Z.; Xu, W. J.; Song, L.; Ouyang, Z. W.; Wang, Z. X.; Guo, J. et al. Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 286–294.

[20]

He, Y. T.; Yang, J. B.; Wang, Y.; Jia, Y. F.; Li, H. T.; Liu, Y. N.; Liu, L. T.; Tan, Q. Atomically dispersed dual-metal ORR catalyst with hierarchical porous structure for Zn-air batteries. ACS Appl. Mater. Interfaces 2024, 16, 12398–12406.

[21]

Xu, X. C.; Li, X. Y.; Lu, W. T.; Sun, X. Y.; Huang, H.; Cui, X. Q.; Li, L.; Zou, X. X.; Zheng, W. T.; Zhao, X. Collective effect in a multicomponent ensemble combining single atoms and nanoparticles for efficient and durable oxygen reduction. Angew. Chem., Int. Ed. 2024, 63, e202400765.

[22]

Zhou, Y. N.; Sheng, L.; Chen, L. L.; Zhao, W. H.; Zhang, W. H.; Yang, J. L. Metal and ligand modification modulates the electrocatalytic HER, OER, and ORR activity of 2D conductive metal-organic frameworks. Nano Res. 2024, 17, 7984–7990.

[23]

Liu, Y. R.; Yuan, S.; Sun, C. T.; Wang, C. L.; Liu, X. J.; Lv, Z. H.; Liu, R.; Meng, Y. Z.; Yang, W. X.; Feng, X. et al. Optimizing Fe-3d electron delocalization by asymmetric Fe–Cu diatomic configurations for efficient anion exchange membrane fuel cells. Adv. Energy Mater. 2023, 13, 2302719.

[24]

Li, L. H.; Liu, X. J.; Wang, J. M.; Liu, R.; Liu, Y. R.; Wang, C. L.; Yang, W. X.; Feng, X.; Wang, B. Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn–air batteries. J. Mater. Chem. A 2022, 10, 18723–18729.

[25]

Jiang, K.; Ma, X. Y.; Back, S.; Zhao, J. J.; Jiang, F. L.; Qin, X. X.; Zhang, J. L.; Cai, W. B. Local coordination and reactivity of a Pt single-atom catalyst as probed by spectroelectrochemical and computational approaches. CCS Chem. 2021, 3, 241–251.

[26]

Sun, K.; Dong, J. C.; Sun, H.; Wang, X. D.; Fang, J. J.; Zhuang, Z. B.; Tian, S. B.; Sun, X. M. Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction. Nat. Catal 2023, 6, 1164–1173.

[27]

Zhao, Q.; Jiang, J. W.; Zhao, W.; Li, S. H.; Mi, W. B.; Zhang, C. Truxone-based conductive metal-organic frameworks for the oxygen reductive reaction. J. Phys. Chem. C 2021, 125, 12690–12698.

[28]

Park, J.; Chen, Z. H.; Flores, R. A.; Wallnerström, G.; Kulkarni, A.; Nørskov, J. K.; Jaramillo, T. F.; Bao, Z. N. Two-dimensional conductive Ni-HAB as a catalyst for the electrochemical oxygen reduction reaction. ACS Appl. Mater. Interfaces 2020, 12, 39074–39081.

[29]

Liu, X. M.; Zhuo, M. L.; Zhang, W. D.; Gao, M.; Liu, X. H.; Sun, B.; Wu, J. One-step ultrasonic synthesis of Co/Ni-catecholates for improved performance in oxygen reduction reaction. Ultrason. Sonochem. 2020, 67, 105179.

[30]

Miner, E. M.; Wang, L.; Dincă, M. Modular O2 electroreduction activity in triphenylene-based metal-organic frameworks. Chem. Sci. 2018, 9, 6286–6291.

[31]

Liu, K. K.; Meng, Z.; Fang, Y.; Jiang, H. L. Conductive MOFs for electrocatalysis and electrochemical sensor. eScience 2023, 3, 100133.

[32]

Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213.

[33]

Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014, 343, 66–69.

[34]

Cichocka, M. O.; Liang, Z. Z.; Feng, D. W.; Back, S.; Siahrostami, S.; Wang, X.; Samperisi, L.; Sun, Y. J.; Xu, H. Y.; Hedin, N. et al. A porphyrinic zirconium metal-organic framework for oxygen reduction reaction: Tailoring the spacing between active-sites through chain-based inorganic building units. J. Am. Chem. Soc. 2020, 142, 15386–15395.

[35]

Duan, Y. X.; Wang, L. X.; Zhang, J. K.; Sun, C. Y.; Wen, R.; Dou, M. L. Surface engineering route to non-pyrolysis MOFs with high-density Co–N x sites and 3D conductive networks for efficient oxygen reduction. ACS Appl. Energy Mater 2023, 6, 3244–3250.

[36]

Albuquerque, G. H.; Fitzmorris, R. C.; Ahmadi, M.; Wannenmacher, N.; Thallapally, P. K.; McGrail, B. P.; Herman, G. S. Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. CrystEngComm 2015, 17, 5502–5510.

[37]

Díaz-García, M.; Sánchez-Sánchez, M. Synthesis and characterization of a new Cd-based metal-organic framework isostructural with MOF-74/CPO-27 materials. Microporous Mesoporous Mater. 2014, 190, 248–254.

[38]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[39]

Angel, S. M.; Barnett, N. S.; Talin, A. A.; Foster, M. E.; Stavila, V.; Allendorf, M. D.; So, M. C. From insulator to semiconductor: Effect of host–guest interactions on charge transport in M-MOF-74 metal-organic frameworks. J. Mater. Chem. C 2024, 12, 2699–2704.

[40]

Liao, Y. X.; Li, C.; Lou, X. B.; Wang, P.; Yang, Q.; Shen, M.; Hu, B. W. Highly reversible lithium storage in cobalt 2,5-dioxido-1,4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance. J. Colloid Interface Sci. 2017, 506, 365–372.

[41]

Jia, J. Z.; Zhao, X. H.; Hu, W. H.; Wang, Y. T.; Huang, J. F.; Huang, J. E.; Li, H.; Peng, Y.; Ma, H. Y.; Xu, C. L. Role of cobalt phthalocyanine on the formation of high-valent cobalt species revealed by in situ Raman spectroscopy. J. Mater. Chem. A 2023, 11, 8141–8149.

[42]

Strauss, I.; Mundstock, A.; Hinrichs, D.; Himstedt, R.; Knebel, A.; Reinhardt, C.; Dorfs, D.; Caro, J. The interaction of guest molecules with Co-MOF-74: A Vis/NIR and Raman approach. Angew. Chem., Int. Ed. 2018, 57, 7434–7439.

[43]

Xing, D. N.; Cui, Z. H.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Two-dimensional π–d conjugated metal-organic framework Fe3(hexaiminotriphenylene)2 as a photo-Fenton like catalyst for highly efficient degradation of antibiotics. Appl. Catal. B: Environ. 2021, 290, 120029.

[44]

Xing, D. N.; Wang, Y. Y.; Zhou, P.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Co3(hexaiminotriphenylene)2: A conductive two-dimensional π–d conjugated metal-organic framework for highly efficient oxygen evolution reaction. Appl. Catal. B: Environ. 2020, 278, 119295.

[45]

Zhao, X. H.; Pattengale, B.; Fan, D. H.; Zou, Z. H.; Zhao, Y. Q.; Du, J.; Huang, J. E.; Xu, C. L. Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett. 2018, 3, 2520–2526.

[46]

Qian, Q. Z.; Li, Y. P.; Liu, Y.; Yu, L.; Zhang, G. Q. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139.

[47]

Zhao, K. Y.; Shen, Q. K.; Tao, Y.; Li, J. R.; Wang, M. L.; Li, C.; Xu, B. J. Atomically dispersed N/O-coordinated cobalt catalyst enables aerobic oxygenation of olefins under ambient conditions. ACS Catal. 2023, 13, 12591–12600.

[48]

Li, Y.; Li, J. W.; Huang, J. H.; Chen, J. X.; Kong, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Chai, G. L.; Wen, Z. H. et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem., Int. Ed. 2021, 60, 9078–9085.

[49]

Ren, J. Y.; Li, Z.; Qu, B. H.; Meng, L. Y.; Bai, L. L.; Sun, J. H.; Zhang, Z. Q.; Qu, Y.; Jing, L. Q. Visual eosin Y-based photosensitization sensing systems for ultrasensitive detection of diclofenac with single-atom Co–N2O2 site-immobilized g-C3N4 nanosheets. Adv. Mater. 2024, 36, 2404392.

[50]

Shi, J. J.; Wei, Y.; Zhou, D.; Zhang, L. L.; Yang, X. F.; Miao, Z. L.; Qi, H. F.; Zhang, S. X.; Li, A. Q.; Liu, X. Y. et al. Introducing Co–O moiety to Co–N–C single-atom catalyst for ethylbenzene dehydrogenation. ACS Catal. 2022, 12, 7760–7772.

[51]

Ni, B. X.; Shen, P.; Zhang, G. R.; Zhao, J. J.; Ding, H. H.; Ye, Y. F.; Yue, Z. Y.; Yang, H.; Wei, H.; Jiang, K. Second-shell N dopants regulate acidic O2 reduction pathways on isolated Pt sites. J. Am. Chem. Soc. 2024, 146, 11181–11192.

[52]

Jiang, K.; Zhao, J. J.; Wang, H. T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv. Funct. Mater. 2020, 30, 2003321.

[53]

Han, J. X.; Tan, H.; Guo, K.; Lv, H. Y.; Peng, X. Y.; Zhang, W.; Lin, H. P.; Apfel, U. P.; Cao, R. The “pull effect” of a hanging ZnII on improving the four-electron oxygen reduction selectivity with Co porphyrin. Angew. Chem., Int. Ed. 2024, 63, e202409793.

Nano Research
Article number: 94907195
Cite this article:
Liu W, Liang Y, Huo M, et al. Ligand engineering of Co-MOF-74 with hexaaminotriphenylene for enhanced oxygen reduction reaction in zinc-air batteries. Nano Research, 2025, 18(2): 94907195. https://doi.org/10.26599/NR.2025.94907195
Topics:

783

Views

287

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 October 2024
Revised: 24 November 2024
Accepted: 16 December 2024
Published: 14 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return