Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Zinc-air batteries hold great promise as a next-generation efficient and environmentally friendly energy technology. However, the sluggish kinetics of the oxygen reduction reaction (ORR) process pose a significant challenge to their development. To address this issue, atom dispersion catalysts are developed to maximize the utilization of metal active centers. Metal-organic frameworks (MOFs) are a series of molecular materials with high atomic-level dispersion metal utilization, but they often lack sufficient electrical conductivity. Their application in MOF electrocatalysis remains limited unless the MOF material is transferred to a carbon-based material through heat treatment. To overcome this limitation, we employed coordination engineering to incorporate hexaaminotriphenylene (HATP) molecules with strong conjugation into Co-MOF-74. The resulting Co-MOF-74-HATP catalyst represents high activity, achieving an ORR half-wave potential (E1/2) of 0.84 V and demonstrating good stability (ΔE1/2 = 20 mV after 10,000 cycles). Additionally, the Co-MOF-74-HATP also performs a 320 mV overpotential (10 mA·cm−2) for the oxygen evolution reaction. Meanwhile, Co-MOF-74-HATP displays a peak power density of 96.6 mW·cm−2 in zinc-air batteries, surpassing the commercially available Pt/C + RuO2. This work presents a new pathway to design MOF-based ORR catalysts and provides a new direction for the preparation of key materials for zinc-air battery (ZAB).
Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.
Whitesides, G. M.; Crabtree, G. W. Don't forget long-term fundamental research in energy. Science 2007, 315, 796–798.
Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.
Zhao, X.; Takao, S.; Yoshida, Y.; Kaneko, T.; Gunji, T.; Higashi, K.; Uruga, T.; Iwasawa, Y. Roles of structural defects in polycrystalline platinum nanowires for enhanced oxygen reduction activity. Appl. Catal. B: Environ. 2023, 324, 122268.
Du, L.; Lv, M.; Zhang, J.; Song, H.; Dang, D.; Liu, Q.; Cui, Z.; Liao, S. Robust InNCo3− x Mn x nitride-supported Pt nanoparticles as high-performance bifunctional electrocatalysts for Zn-air batteries. ACS Appl. Energy Mater. 2020, 3, 5293–5300.
Tao, L.; Wang, K.; Lv, F.; Mi, H. T.; Lin, F. X.; Luo, H.; Guo, H. Y.; Zhang, Q. H.; Gu, L.; Luo, M. C. et al. Precise synthetic control of exclusive ligand effect boosts oxygen reduction catalysis. Nat. Commun. 2023, 14, 6893.
Hu, L. Y.; Dai, C. L.; Chen, L. W.; Zhu, Y. H.; Hao, Y. C.; Zhang, Q. H.; Gu, L.; Feng, X.; Yuan, S.; Wang, L. et al. Metal-triazolate-framework-derived FeN4Cl1 single-atom catalysts with hierarchical porosity for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 27324–27329.
Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.
Zhao, W. Y.; Chi, B.; Liang, L. C.; Yang, P. F.; Zhang, W.; Ge, X.; Wang, L. M.; Cui, Z. M.; Liao, S. J. Optimizing the electronic structure of ordered Pt–Co–Ti ternary intermetallic catalyst to boost acidic oxygen reduction. ACS Catal. 2022, 12, 7571–7578.
Lin, F. X.; Lv, F.; Zhang, Q. H.; Luo, H.; Wang, K.; Zhou, J. H.; Zhang, W. Y.; Zhang, W. S.; Wang, D. W.; Gu, L. et al. Local coordination regulation through tuning atomic-scale cavities of Pd metallene toward efficient oxygen reduction electrocatalysis. Adv. Mater. 2022, 34, 2202084.
Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.
Yang, H.; Liu, Y. F.; Liu, X. L.; Wang, X. K.; Tian, H.; Waterhouse, G. I. N.; Kruger, P. E.; Telfer, S. G.; Ma, S. Q. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2022, 2, 227–234.
Gao, L.; Song, Y.; Xu, X. B.; Li, C.; Hu, C. Q. Mn-modified nitrogen-doped Pt-based electrocatalyst for efficient oxygen reduction in aluminum-air batteries. Nano Res. 2024, 17, 7126–7135.
Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.
Zhao, J. J.; Fu, C. H.; Ye, K.; Liang, Z.; Jiang, F. L.; Shen, S. Y.; Zhao, X. R.; Ma, L.; Shadike, Z.; Wang, X. M. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 2022, 13, 685.
Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.
Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677–10682.
Liu, X. H.; Hu, W. L.; Jiang, W. J.; Yang, Y. W.; Niu, S.; Sun, B.; Wu, J.; Hu, J. S. Well-defined metal-O6 in metal-catecholates as a novel active site for oxygen electroreduction. ACS Appl. Mater. Interfaces 2017, 9, 28473–28477.
Lian, Y. B.; Yang, W. J.; Zhang, C. F.; Sun, H.; Deng, Z.; Xu, W. J.; Song, L.; Ouyang, Z. W.; Wang, Z. X.; Guo, J. et al. Unpaired 3d electrons on atomically dispersed cobalt centres in coordination polymers regulate both oxygen reduction reaction (ORR) activity and selectivity for use in zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 286–294.
He, Y. T.; Yang, J. B.; Wang, Y.; Jia, Y. F.; Li, H. T.; Liu, Y. N.; Liu, L. T.; Tan, Q. Atomically dispersed dual-metal ORR catalyst with hierarchical porous structure for Zn-air batteries. ACS Appl. Mater. Interfaces 2024, 16, 12398–12406.
Xu, X. C.; Li, X. Y.; Lu, W. T.; Sun, X. Y.; Huang, H.; Cui, X. Q.; Li, L.; Zou, X. X.; Zheng, W. T.; Zhao, X. Collective effect in a multicomponent ensemble combining single atoms and nanoparticles for efficient and durable oxygen reduction. Angew. Chem., Int. Ed. 2024, 63, e202400765.
Zhou, Y. N.; Sheng, L.; Chen, L. L.; Zhao, W. H.; Zhang, W. H.; Yang, J. L. Metal and ligand modification modulates the electrocatalytic HER, OER, and ORR activity of 2D conductive metal-organic frameworks. Nano Res. 2024, 17, 7984–7990.
Liu, Y. R.; Yuan, S.; Sun, C. T.; Wang, C. L.; Liu, X. J.; Lv, Z. H.; Liu, R.; Meng, Y. Z.; Yang, W. X.; Feng, X. et al. Optimizing Fe-3d electron delocalization by asymmetric Fe–Cu diatomic configurations for efficient anion exchange membrane fuel cells. Adv. Energy Mater. 2023, 13, 2302719.
Li, L. H.; Liu, X. J.; Wang, J. M.; Liu, R.; Liu, Y. R.; Wang, C. L.; Yang, W. X.; Feng, X.; Wang, B. Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn–air batteries. J. Mater. Chem. A 2022, 10, 18723–18729.
Jiang, K.; Ma, X. Y.; Back, S.; Zhao, J. J.; Jiang, F. L.; Qin, X. X.; Zhang, J. L.; Cai, W. B. Local coordination and reactivity of a Pt single-atom catalyst as probed by spectroelectrochemical and computational approaches. CCS Chem. 2021, 3, 241–251.
Sun, K.; Dong, J. C.; Sun, H.; Wang, X. D.; Fang, J. J.; Zhuang, Z. B.; Tian, S. B.; Sun, X. M. Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction. Nat. Catal 2023, 6, 1164–1173.
Zhao, Q.; Jiang, J. W.; Zhao, W.; Li, S. H.; Mi, W. B.; Zhang, C. Truxone-based conductive metal-organic frameworks for the oxygen reductive reaction. J. Phys. Chem. C 2021, 125, 12690–12698.
Park, J.; Chen, Z. H.; Flores, R. A.; Wallnerström, G.; Kulkarni, A.; Nørskov, J. K.; Jaramillo, T. F.; Bao, Z. N. Two-dimensional conductive Ni-HAB as a catalyst for the electrochemical oxygen reduction reaction. ACS Appl. Mater. Interfaces 2020, 12, 39074–39081.
Liu, X. M.; Zhuo, M. L.; Zhang, W. D.; Gao, M.; Liu, X. H.; Sun, B.; Wu, J. One-step ultrasonic synthesis of Co/Ni-catecholates for improved performance in oxygen reduction reaction. Ultrason. Sonochem. 2020, 67, 105179.
Miner, E. M.; Wang, L.; Dincă, M. Modular O2 electroreduction activity in triphenylene-based metal-organic frameworks. Chem. Sci. 2018, 9, 6286–6291.
Liu, K. K.; Meng, Z.; Fang, Y.; Jiang, H. L. Conductive MOFs for electrocatalysis and electrochemical sensor. eScience 2023, 3, 100133.
Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213.
Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014, 343, 66–69.
Cichocka, M. O.; Liang, Z. Z.; Feng, D. W.; Back, S.; Siahrostami, S.; Wang, X.; Samperisi, L.; Sun, Y. J.; Xu, H. Y.; Hedin, N. et al. A porphyrinic zirconium metal-organic framework for oxygen reduction reaction: Tailoring the spacing between active-sites through chain-based inorganic building units. J. Am. Chem. Soc. 2020, 142, 15386–15395.
Duan, Y. X.; Wang, L. X.; Zhang, J. K.; Sun, C. Y.; Wen, R.; Dou, M. L. Surface engineering route to non-pyrolysis MOFs with high-density Co–N x sites and 3D conductive networks for efficient oxygen reduction. ACS Appl. Energy Mater 2023, 6, 3244–3250.
Albuquerque, G. H.; Fitzmorris, R. C.; Ahmadi, M.; Wannenmacher, N.; Thallapally, P. K.; McGrail, B. P.; Herman, G. S. Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. CrystEngComm 2015, 17, 5502–5510.
Díaz-García, M.; Sánchez-Sánchez, M. Synthesis and characterization of a new Cd-based metal-organic framework isostructural with MOF-74/CPO-27 materials. Microporous Mesoporous Mater. 2014, 190, 248–254.
Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.
Angel, S. M.; Barnett, N. S.; Talin, A. A.; Foster, M. E.; Stavila, V.; Allendorf, M. D.; So, M. C. From insulator to semiconductor: Effect of host–guest interactions on charge transport in M-MOF-74 metal-organic frameworks. J. Mater. Chem. C 2024, 12, 2699–2704.
Liao, Y. X.; Li, C.; Lou, X. B.; Wang, P.; Yang, Q.; Shen, M.; Hu, B. W. Highly reversible lithium storage in cobalt 2,5-dioxido-1,4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance. J. Colloid Interface Sci. 2017, 506, 365–372.
Jia, J. Z.; Zhao, X. H.; Hu, W. H.; Wang, Y. T.; Huang, J. F.; Huang, J. E.; Li, H.; Peng, Y.; Ma, H. Y.; Xu, C. L. Role of cobalt phthalocyanine on the formation of high-valent cobalt species revealed by in situ Raman spectroscopy. J. Mater. Chem. A 2023, 11, 8141–8149.
Strauss, I.; Mundstock, A.; Hinrichs, D.; Himstedt, R.; Knebel, A.; Reinhardt, C.; Dorfs, D.; Caro, J. The interaction of guest molecules with Co-MOF-74: A Vis/NIR and Raman approach. Angew. Chem., Int. Ed. 2018, 57, 7434–7439.
Xing, D. N.; Cui, Z. H.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Two-dimensional π–d conjugated metal-organic framework Fe3(hexaiminotriphenylene)2 as a photo-Fenton like catalyst for highly efficient degradation of antibiotics. Appl. Catal. B: Environ. 2021, 290, 120029.
Xing, D. N.; Wang, Y. Y.; Zhou, P.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Cheng, H. F.; Dai, Y.; Huang, B. B. Co3(hexaiminotriphenylene)2: A conductive two-dimensional π–d conjugated metal-organic framework for highly efficient oxygen evolution reaction. Appl. Catal. B: Environ. 2020, 278, 119295.
Zhao, X. H.; Pattengale, B.; Fan, D. H.; Zou, Z. H.; Zhao, Y. Q.; Du, J.; Huang, J. E.; Xu, C. L. Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett. 2018, 3, 2520–2526.
Qian, Q. Z.; Li, Y. P.; Liu, Y.; Yu, L.; Zhang, G. Q. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139.
Zhao, K. Y.; Shen, Q. K.; Tao, Y.; Li, J. R.; Wang, M. L.; Li, C.; Xu, B. J. Atomically dispersed N/O-coordinated cobalt catalyst enables aerobic oxygenation of olefins under ambient conditions. ACS Catal. 2023, 13, 12591–12600.
Li, Y.; Li, J. W.; Huang, J. H.; Chen, J. X.; Kong, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Chai, G. L.; Wen, Z. H. et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem., Int. Ed. 2021, 60, 9078–9085.
Ren, J. Y.; Li, Z.; Qu, B. H.; Meng, L. Y.; Bai, L. L.; Sun, J. H.; Zhang, Z. Q.; Qu, Y.; Jing, L. Q. Visual eosin Y-based photosensitization sensing systems for ultrasensitive detection of diclofenac with single-atom Co–N2O2 site-immobilized g-C3N4 nanosheets. Adv. Mater. 2024, 36, 2404392.
Shi, J. J.; Wei, Y.; Zhou, D.; Zhang, L. L.; Yang, X. F.; Miao, Z. L.; Qi, H. F.; Zhang, S. X.; Li, A. Q.; Liu, X. Y. et al. Introducing Co–O moiety to Co–N–C single-atom catalyst for ethylbenzene dehydrogenation. ACS Catal. 2022, 12, 7760–7772.
Ni, B. X.; Shen, P.; Zhang, G. R.; Zhao, J. J.; Ding, H. H.; Ye, Y. F.; Yue, Z. Y.; Yang, H.; Wei, H.; Jiang, K. Second-shell N dopants regulate acidic O2 reduction pathways on isolated Pt sites. J. Am. Chem. Soc. 2024, 146, 11181–11192.
Jiang, K.; Zhao, J. J.; Wang, H. T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide. Adv. Funct. Mater. 2020, 30, 2003321.
Han, J. X.; Tan, H.; Guo, K.; Lv, H. Y.; Peng, X. Y.; Zhang, W.; Lin, H. P.; Apfel, U. P.; Cao, R. The “pull effect” of a hanging ZnII on improving the four-electron oxygen reduction selectivity with Co porphyrin. Angew. Chem., Int. Ed. 2024, 63, e202409793.
783
Views
287
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).