Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Timely monitoring abnormal gaits of teenagers is crucial for their physical health and development. Triboelectric nanogenerators (TENGs) are widely used in the wearable field. Choosing high-performance and safe triboelectric materials to monitor abnormal gaits remains challenging. Polyoxometalates (POMs) nanomaterials can effectively serve as triboelectric materials due to rich surface morphology and large specific surface area. Herein, six different sized POMs nanorods (Ag4SiW12O40·nH2O) synthesized through self-assembly of POMs (H4SiW12O40·nH2O) were used as triboelectric materials. The TENG composed of nanorod with a diameter of 100 nm and a length of 400–1000 nm has optimal performance with the voltage, current density and charge are 104.3 V, 1127.1 μA·m−2, and 15.38 nC, respectively, which are more than two times of the TENG composed of POMs (H4SiW12O40·nH2O). The optimized TENG maintained a voltage of around 100 V throughout the 1000 s stability test. The maximum power amounts to 25.2 μW at 500 MΩ external resistance. The reasons for the improved performance of nanorods TENG compared to POMs TENG are the increase in roughness and surface potential, which was confirmed through atomic force microscopy (AFM) and kelvin probe force microscopy (KPFM) testing. Furthermore, optimized TENG was applied to the feet of different teenagers and the left and right feet of the same person to monitor abnormal gait. The changes in voltage can sensitively display the inconsistency and abnormal situations of gaits. This study confirms the potential and unique advantages of POMs nanomaterials as triboelectric materials and provides a design scheme for gait monitoring.
Gray, N. J.; Desmond, N. A.; Ganapathee, D. S.; Beadle, S.; Bundy, D. A. Breaking down silos between health and education to improve adolescent wellbeing. BMJ 2022, 379, e067683.
Chen, T. J.; Dong, B.; Dong, Y. H.; Li, J.; Ma, Y. H.; Liu, D. S.; Zhang, Y. H.; Xing, Y.; Zheng, Y.; Luo, X. M. et al. Matching actions to needs: Shifting policy responses to the changing health needs of Chinese children and adolescents. Lancet 2024, 403, 1808–1820.
Sanders, J. O.; Qiu, X.; Lu, X.; Duren, D. L.; Liu, R. W.; Dang, D.; Menendez, M. E.; Hans, S. D.; Weber, D. R.; Cooperman, D. R. The uniform pattern of growth and skeletal maturation during the human adolescent growth spurt. Sci. Rep. 2017, 7, 16705.
Eltanani, S.; Olde Scheper, T. V.; Muñoz-Balbontin, M.; Aldea, A.; Cossington, J.; Lawrie, S.; Villalpando-Carrion, S.; Adame, M. J.; Felgueres, D.; Martin, C. et al. A novel criticality analysis method for assessing obesity treatment efficacy. Appl. Sci. 2023, 13, 13225.
Chen, J. L.; Zhao, Y. F.; Lin, J. J.; Dai, Y. N.; Hu, B. Y.; Gao, S. A flexible insole gait monitoring technique for the internet of health things. IEEE Sens. J. 2021, 21, 26397–26405.
Liu, Y. N.; Li, X. L.; Dou, X. R.; Huang, Z. G.; Wang, J.; Liao, B. G.; Zhang, X. H. Correlational analysis of three-dimensional spinopelvic parameters with standing balance and gait characteristics in adolescent idiopathic scoliosis: A preliminary research on Lenke V. Front. Bioeng. Biotechnol. 2022, 10, 1022376.
Portinaro, N.; Leardini, A.; Panou, A.; Monzani, V.; Caravaggi, P. Modifying the rizzoli foot model to improve the diagnosis of pes-planus: Application to kinematics of feet in teenagers. J. Foot Ankle Res. 2014, 7, 57.
US Preventive Services Task Force. Screening for adolescent idiopathic scoliosis: US preventive services task force recommendation statement. JAMA 2018, 319, 165–172.
Cheng, J. C.; Castelein, R. M.; Chu, W. C.; Danielsson, A. J.; Dobbs, M. B.; Grivas, T. B.; Gurnett, C. A.; Luk, K. D.; Moreau, A.; Newton, P. O. et al. Adolescent idiopathic scoliosis. Nat. Rev. Dis. Primers 2015, 1, 15030.
Wise, C. A.; Sepich, D.; Ushiki, A.; Khanshour, A. M.; Kidane, Y. H.; Makki, N.; Gurnett, C. A.; Gray, R. S.; Rios, J. J.; Ahituv, N. et al. The cartilage matrisome in adolescent idiopathic scoliosis. Bone Res. 2020, 8, 13.
Li, W. C.; Lu, W. Q.; Sha, X. P.; Xing, H. L.; Lou, J. Z.; Sun, H.; Zhao, Y. L. Wearable gait recognition systems based on MEMS pressure and inertial sensors: A review. IEEE Sens. J. 2022, 22, 1092–1104.
Wu, J. P.; Teng, X. R.; Liu, L.; Cui, H. Z.; Li, X. Y. Eutectogel-based self-powered wearable sensor for health monitoring in harsh environments. Nano Res. 2024, 17, 5559–5568.
Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.
Wang, H. B.; Han, M. D.; Song, Y.; Zhang, H. X. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy 2021, 81, 105627.
Zhang, R. Z.; Shen, L.; Li, J. H.; Xue, Y. Y.; Liu, H.; He, J. M.; Qu, M. N. All-fiber-based superhydrophobic wearable self-powered triboelectric nanogenerators for biomechanical and droplet energy harvesting. ACS Appl. Nano Mater. 2023, 6, 23279–23291.
Feng, T. X.; Ling, D.; Li, C. Y.; Zheng, W. T.; Zhang, S. C.; Li, C.; Emel’yanov, A.; Pozdnyakov, A. S.; Lu, L. J.; Mao, Y. C. Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 2024, 17, 4462–4470.
Mao, M. R.; Kong, J. L.; Ge, X. H.; Sun, Y. T.; Yu, H. R.; Liu, J. W.; Huang, W. M.; Wang, D. Y.; Wang, Y. Mxene-based wearable self-powered and photothermal triboelectric nanogenerator patches for wound healing acceleration and tactile sensing. Chem. Eng. J. 2024, 482, 148949.
Chen, K.; Li, Y. Y.; Yang, G. G.; Hu, S. M.; Shi, Z. J.; Yang, G. Fabric-based TENG woven with bio-fabricated superhydrophobic bacterial cellulose fiber for energy harvesting and motion detection. Adv. Funct. Mater. 2023, 33, 2304809.
Wei, C. H.; Cheng, R. W.; Ning, C.; Wei, X. Y.; Peng, X.; Lv, T. M.; Sheng, F. F.; Dong, K.; Wang, Z. L. A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv. Funct. Mater. 2023, 33, 2303562.
Zhang, D. Z.; Xu, Z. Y.; Wang, Z. H.; Cai, H. L.; Wang, J.; Li, K. S. Machine-learning-assisted wearable PVA/acrylic fluorescent layer-based triboelectric sensor for motion, gait and individual recognition. Chem. Eng. J. 2023, 478, 147075.
Yeh, C.; Kao, F. C.; Wei, P. H.; Pal, A.; Kaswan, K.; Huang, Y. T.; Parashar, P.; Yeh, H. Y.; Wang, T. W.; Tiwari, N. et al. Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy 2022, 104, 107852.
Zhao, L. L.; Guo, X.; Pan, Y. S.; Jia, S. C.; Liu, L. Q.; Daoud, W. A.; Poechmueller, P.; Yang, X. Y. Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring. InfoMat 2024, 6, e12520.
Lu, Z.; Jia, C. J.; Yang, X.; Zhu, Y. S.; Sun, F. X.; Zhao, T. M.; Zhang, S. W.; Mao, Y. P. A flexible TENG based on micro-structure film for speed skating techniques monitoring and biomechanical energy harvesting. Nanomaterials 2022, 12, 1576.
Li, W. J.; Lu, L. Q.; Kottapalli, A. G. P.; Pei, Y. T. Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise. Nano Energy 2022, 95, 107018.
Miao, Y.; Zhou, M. J.; Yi, J.; Wang, Y. Y.; Tian, G. J.; Zhang, H. X.; Huang, W. L.; Wang, W. H.; Wu, R. H.; Ma, L. Y. Woven fabric triboelectric nanogenerators for human-computer interaction and physical health monitoring. Nano Res. 2024, 17, 5540–5548.
Zhang, G. Y.; Liu, C.; Yang, L. J.; Kong, Y.; Fan, X.; Zhang, J.; Liu, X. Y.; Yuan, B. H. A flame-retardant and conductive fabric-based triboelectric nanogenerator: Application in fire alarm and emergency evacuation. J. Colloid Interface Sci. 2024, 658, 219–229.
Wei, Z. T.; Wang, J. L.; Liu, Y. H.; Yuan, J. X.; Liu, T.; Du, G. L.; Zhu, S. Q. Y.; Nie, S. X. Sustainable triboelectric materials for smart active sensing systems. Adv. Funct. Mater. 2022, 32, 2208277.
Chai, J. L.; Wang, G. L.; Zhao, J. C.; Wang, G. Z.; Wei, C.; Zhang, A. M.; Zhao, G. Q. Robust, breathable, and chemical-resistant polytetrafluoroethylene (PTFE) films achieved by novel in-situ fibrillation strategy for high-performance triboelectric nanogenerators. Nano Res. 2024, 17, 1942–1951.
Shao, Z. C.; Chen, J. S.; Gao, K. X.; Xie, Q.; Xue, X. J.; Zhou, S. Y.; Huang, C.; Mi, L. W.; Hou, H. W. A double-helix metal-chain metal-organic framework as a high-output triboelectric nanogenerator material for self-powered anticorrosion. Angew. Chem., Int. Ed. 2022, 61, e202208994.
Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.
Pan, X.; Zhuang, Y. X.; He, W.; Lin, C. J.; Mei, L. F.; Chen, C. J.; Xue, H.; Sun, Z. G.; Wang, C. F.; Peng, D. F. et al. Quantifying the interfacial triboelectricity in inorganic-organic composite mechanoluminescent materials. Nat. Commun. 2024, 15, 2673.
Liu, X. R.; Zhao, Z. H.; Gao, Y. K.; Nan, Y.; Hu, Y. X.; Guo, Z. T.; Qiao, W. Y.; Wang, J.; Zhou, L. L.; Wang, Z. L. et al. Triboelectric nanogenerators exhibiting ultrahigh charge density and energy density. Energy Environ. Sci. 2024, 17, 3819–3831.
Wang, H. M.; Xu, L.; Bai, Y.; Wang, Z. L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 2020, 11, 4203.
Yun, S. Y.; Kim, M. H.; Yang, G. G.; Choi, H. J.; Kim, D. W.; Choi, Y. K.; Kim, S. O. A triboelectric nanogenerator with synergistic complementary nanopatterns fabricated by block copolymer self-assembly. J. Mater. Chem. A 2024, 12, 11302–11309.
Liu, L. Y.; Wu, M. J.; Zhao, W. T.; Tao, J.; Zhou, X. R.; Xiong, J. Q. Progress of triboelectric nanogenerators with environmental adaptivity. Adv. Funct. Mater. 2024, 34, 2308353.
Wang, Z. K.; Hao, C. C.; Cai, M. Z.; Cui, J.; Zheng, Y. Q.; Xue, C. Y. A highoutput PDMS-MXene/gelatin triboelectric nanogenerator with the petal surface-microstructure. Nano Res. 2024, 17, 4151–4162.
Ma, P. T.; Hu, F.; Wang, J. P.; Niu, J. Y. Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications. Coord. Chem. Rev. 2019, 378, 281–309.
Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.
Song, Y. F.; Tsunashima, R. Recent advances on polyoxometalate-based molecular and composite materials. Chem. Soc. Rev. 2012, 41, 7384–7402.
Wang, G. X.; Chen, X. F.; Li, B.; Wu, L. X. Near-infrared photothermal conversion of polyoxometalate-modified gold nanorods for plasmon-enhanced catalysis. Inorg. Chem. Front. 2023, 10, 1852–1862.
Feng, Y. Q.; Fu, F. Y.; Zeng, L. L.; Zhao, M. Y.; Xin, X.; Liang, J. K.; Zhou, M.; Fang, X. K.; Lv, H. J.; Yang, G. Y. Atomically precise silver clusters stabilized by lacunary polyoxometalates with photocatalytic CO2 reduction activity. Angew. Chem., Int. Ed. 2024, 63, e202317341.
Cameron, J. M.; Guillemot, G.; Galambos, T.; Amin, S. S.; Hampson, E.; Mall Haidaraly, K.; Newton, G. N.; Izzet, G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 2022, 51, 293–328.
Lu, J. K.; He, P. P.; Niu, J. Y.; Wang, J. P. Polyoxometalate-supported metal carbonyl derivatives: From synthetic strategies to structural diversity and applications. Inorg. Chem. Front. 2019, 6, 3041–3056.
Yang, M. Z.; Li, H. Y.; Wang, J.; Shi, W. X.; Zhang, Q. H.; Xing, H. Z.; Ren, W. B.; Sun, B. Z.; Guo, M. F.; Xu, E. X. et al. Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C. Nat. Energy 2024, 9, 143–153.
Liao, F.; Yin, K.; Ji, Y. J.; Zhu, W. X.; Fan, Z. L.; Li, Y. Y.; Zhong, J.; Shao, M. W.; Kang, Z. H.; Shao, Q. Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution. Nat. Commun. 2023, 14, 1248.
Fan, Z. L.; Liao, F.; Shi, H. X.; Liu, Y.; Shao, M. W.; Kang, Z. H. Highly efficient water splitting over a RuO2/F-doped graphene electrocatalyst with ultra-low ruthenium content. Inorg. Chem. Front. 2020, 7, 2188–2194.
Zhu, C. C.; Xu, L.; Liu, Y. Z.; Liu, J.; Wang, J.; Sun, H. J.; Lan, Y. Q.; Wang, C. Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion. Nat. Commun. 2024, 15, 4213.
Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.
Yuan, G. B.; Ge, H. Y.; Shi, W. X.; Liu, J. L.; Zhang, Y.; Wang, X. Hybrid sub-1 nm nanosheets of co-assembled MnZnCuO x and polyoxometalate clusters as anodes for Li-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202309934.
Jiao, Y. Q.; Yan, H. J.; Wang, R. H.; Wang, X. W.; Zhang, X. M.; Wu, A. P.; Tian, C. G.; Jiang, B. J.; Fu, H. G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 49596–49606.
Liu, Y.; Yue, C. L.; Sun, F. Y.; Bao, W. J.; Chen, L. L.; Zeb, Z.; Wang, C. Z.; Ma, S. Y.; Zhang, C.; Sun, D. F. et al. Superhydrophilic molybdenum phosphide quantum dots on porous carbon matrix for boosting hydrogen evolution reaction. Chem. Eng. J. 2023, 454, 140105.
Ni, L. B.; Gu, J.; Jiang, X. Y.; Xu, H. J.; Wu, Z.; Wu, Y. C.; Liu, Y.; Xie, J.; Wei, Y. G.; Diao, G. W. Polyoxometalate-cyclodextrin-based cluster-organic supramolecular framework for polysulfide conversion and guest-host recognition in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2023, 62, e202306528.
Bian, Y. M.; Wang, R. Z.; Xu, X. X.; Chen, J.; Wang, Q. A wheel-like polyoxometalate for haloperoxidase-inspired antibiofouling with H2O2 in situ provided by electrocatalysis. Inorg. Chem. Front. 2024, 11, 3047–3055.
Zheng, Y.; Xu, X. X.; Chen, J.; Wang, Q. Surface O2- regulation on POM electrocatalyst to achieve accurate 2e/4e-ORR control for H2O2 production and Zn-air battery assemble. Appl. Catal. B: Environ. 2021, 285, 119788.
Zuo, Y. K.; Li, Y. R.; Sun, Y. Q.; Li, X. X.; Sun, C.; Zheng, S. T. Efficient catalysis of Knoevenagel condensation by 1D copper-containing heteropolyoxoniobate at room temperature. Inorg. Chem. Front. 2024, 11, 1993–1997.
Wang, T.; Ji, T.; Chen, W. L.; Li, X. H.; Guan, W.; Geng, Y.; Wang, X. L.; Li, Y. G.; Kang, Z. H. Polyoxometalate film simultaneously converts multiple low-value all-weather environmental energy to electricity. Nano Energy 2020, 68, 104349.
Ji, T.; Chen, W. L.; Kang, Z. H.; Zhang, L. M. Polyoxometalates for continuous power generation by atmospheric humidity. Nano Res. 2024, 17, 1875–1885.
He, P.; Chen, W. L.; Li, J. P.; Zhang, H.; Li, Y. W.; Wang, E. B. Keggin and Dawson polyoxometalates as electrodes for flexible and transparent piezoelectric nanogenerators to efficiently utilize mechanical energy in the environment. Sci. Bull. 2020, 65, 35–44.
Su, Y.; Liu, X. D.; Wang, H. Y.; Hao, Y. J.; Guan, L. Y.; Chen, W. L. Polyoxometalate-modified g-C3N4 composites with high work function for triboelectric nanogenerators. Inorg. Chem. 2024, 63, 1328–1336.
Su, Y.; Ma, C. H.; Chen, W. L.; Xu, X. Y.; Tang, Q. X. Flexible and transparent triboelectric nanogenerators based on polyoxometalate-modified polydimethylsiloxane composite films for harvesting biomechanical energy. ACS Appl. Nano Mater. 2022, 5, 15369–15377.
Singal, S.; Yadav, A.; Sharma, K.; Sharma, M.; Sharma, R. K. An electrochemical impedance aptasensor based on selenomolybdate nanodot/antimonene hybrid for platelet-derived growth factor-BB. J. Mater. Chem. B 2023, 11, 1958–1970.
Liu, Q. D.; Wang, X. Fabricating sub-nanometer materials through cluster assembly. Chem. Sci. 2022, 13, 12280–12289.
Jiang, L. J.; Li, J. F.; Xia, D. D.; Gao, M.; Li, W. Z.; Fu, D. Y.; Zhao, S. C.; Li, G. M. Lanthanide polyoxometalate based water-jet film with reversible luminescent switching for rewritable security printing. ACS Appl. Mater. Interfaces 2021, 13, 49462–49471.
Chen, L.; Chen, W. L.; Wang, X. L.; Li, Y. G.; Su, Z. M.; Wang, E. B. Polyoxometalates in dye-sensitized solar cells. Chem. Soc. Rev. 2019, 48, 260–284.
Song, N. Z.; Lu, M. Y.; Liu, J. C.; Lin, M.; Shangguan, P.; Wang, J. F.; Shi, B. Y.; Zhao, J. W. A giant heterometallic polyoxometalate nanocluster for enhanced brain-targeted glioma therapy. Angew. Chem., Int. Ed. 2024, 63, e202319700.
Zhao, H. S.; Zhao, C. Q.; Liu, Z. W.; Yi, J. D.; Liu, X. M.; Ren, J. S.; Qu, X. G. A polyoxometalate-based pathologically activated assay for efficient bioorthogonal catalytic selective therapy. Angew. Chem., Int. Ed. 2023, 62, e202303989.
Kang, Z. H.; Wang, E. B.; Jiang, M.; Lian, S. Y.; Li, Y. G.; Hu, C. W. Convenient controllable synthesis of inorganic 1D nanocrystals and 3D high-ordered microtubes. Eur. J. Inorg. Chem. 2003, 2003, 370–376.
Cuentas-Gallegos, A. K.; Zamudio-Flores, A.; Casas-Cabanas, M. Dispersion of SiW12 nanoparticles on highly oxidized multiwalled carbon nanotubes and their electrocatalytic behavior. J. Nano Res. 2011, 14, 11–18.
Xiao, C. L.; Zhang, L.; Wang, K. F.; Wang, H. P.; Zhou, Y. Y.; Wang, W. Z. A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: A case study of SiW12/K-C3N4. Appl. Catal. B: Environ. 2018, 239, 260–267.
Chen, L.; Chen, W. L.; Tan, H. Q.; Li, J. S.; Sang, X. J.; Wang, E. B. The improved efficiency of quantum-dot-sensitized solar cells with a wide spectrum and pure inorganic donor–acceptor type polyoxometalate as a collaborative cosensitizer. J. Mater. Chem. A 2016, 4, 4125–4133.
Zhang, J.; Xiao, F. P.; Hao, J.; Wei, Y. G. The chemistry of organoimido derivatives of polyoxometalates. Dalton Trans. 2012, 41, 3599–3615.
Jiang, B. J.; Tian, C. G.; Song, G.; Chang, W.; Wang, G. F.; Wu, Q.; Fu, H. G. A novel Ag/graphene composite: Facile fabrication and enhanced antibacterial properties. J. Mater. Sci. 2013, 48, 1980–1985.
Sui, C.; Wang, Z. Y.; Wang, C.; Zhou, G. D.; Cheng, T. X. Fabrication and photocatalytic properties of water-stable Ag/PW12/PVA nanocomposites. Chem. Res. Chin. Univ. 2016, 32, 854–861.
Sartorel, A.; Carraro, M.; Bagno, A.; Scorrano, G.; Bonchio, M. Asymmetric tetraprotonation of γ-[(SiO4)W10O32]8− triggers a catalytic epoxidation reaction: Perspectives in the assignment of the active catalyst. Angew. Chem., Int. Ed. 2007, 46, 3255–3258.
Xu, X. Y.; Xie, M. Y.; Xu, K. C.; Zhao, Y. g-C3N4@PMo12 composite material double adjustment improves the performance of perovskite-based photovoltaic devices. Sol. Energy 2020, 209, 363–370.
Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.
Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.
Wen, J.; He, H. L.; Niu, C. P.; Rong, M. Z.; Huang, Y. Q.; Wu, Y. An improved equivalent capacitance model of the triboelectric nanogenerator incorporating its surface roughness. Nano Energy 2022, 96, 107070.
Xu, Y.; Min, G. B.; Gadegaard, N.; Dahiya, R.; Mulvihill, D. M. A unified contact force-dependent model for triboelectric nanogenerators accounting for surface roughness. Nano Energy 2020, 76, 105067.
Zhou, Z. K.; Qin, H. F.; Cui, P.; Wang, J. J.; Zhang, J. J.; Ge, Y.; Liu, H. M.; Feng, C.; Meng, Y.; Huang, Z. Y. et al. Enhancing the output of liquid-solid triboelectric nanogenerators through surface roughness optimization. ACS Appl. Mater. Interfaces 2024, 16, 4763–4771.
Liu, Y. K.; Liu, W. L.; Wang, Z.; He, W. C.; Tang, Q.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 2020, 11, 1599.
Zhang, Y. Z.; Gao, X. Y.; Zhang, Y. C.; Gui, J. Z.; Sun, C. L.; Zheng, H. W.; Guo, S. S. High-efficiency self-charging power systems based on performance-enhanced hybrid nanogenerators and asymmetric supercapacitors for outdoor search and rescue. Nano Energy 2022, 92, 106788.
Li, G. Z.; Wang, G. G.; Ye, D. M.; Zhang, X. W.; Lin, Z. Q.; Zhou, H. L.; Li, F.; Wang, B. L.; Han, J. C. High-performance transparent and flexible triboelectric nanogenerators based on PDMS-PTFE composite films. Adv. Electron. Mater. 2019, 5, 1800846.
380
Views
54
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).