Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Artificial visual sensors (AVSs) with bio-inspired sensing and neuromorphic signal processing are essential for next-generation intelligent systems. Conventional optoelectronic devices employed in AVSs operate discretely in terms of sensing, processing, and memorization, and not ideal for applications necessitating shape deformation to achieve wide fields-of-view and deep depths-of-field. Here, we present stretchable artificial visual sensors (S-AVS) capable of concurrently sensing and processing optical signals while adapting to shape deformations. Specifically, these S-AVSs use a stretchable transistor structure with a meticulously engineered photosensitive semiconductor layer, comprising an organic semiconductor, thermoplastic elastomer, and cesium lead bromide quantum dots (CsPbBr3 QDs). They exhibit synaptic behaviors such as excitatory postsynaptic current (EPSC) and paired-pulse facilitation (PPF) under optical signals, maintaining functionality under 30% strain and repeated stretching. The nonlinear response and fading memory effect support in-sensor reservoir computing, achieving image recognition accuracies of 97.46% and 97.1% at 0% and 30% strain, respectively.
Chen, C. W. Internet of video things: Next-generation IoT with visual sensors. IEEE Internet Things J. 2020, 7, 6676–6685.
Li, Y.; Moreau, J.; Ibanez-Guzman, J. Emergent visual sensors for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4716–4737.
Aziz, A.; Pane, S.; Iacovacci, V.; Koukourakis, N.; Czarske, J.; Menciassi, A.; Medina-Sánchez, M.; Schmidt, O. G. Medical imaging of microrobots: Toward in vivo applications. ACS Nano 2020, 14, 10865–10893.
Yang, J. C.; Wang, C. G.; Jiang, B.; Song, H. B.; Meng, Q. G. Visual perception enabled industry intelligence: State of the art, challenges and prospects. IEEE Trans. Ind. Inf. 2021, 17, 2204–2219.
Coburn, C.; Fan, D. J.; Forrest, S. R. Organic charge-coupled device. ACS Photonics 2019, 6, 2090–2095.
El Gamal, A.; Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 2005, 21, 6–20.
Yokogawa, S.; Burgos, S. P.; Atwater, H. A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 2012, 12, 4349–4354.
Zhang, J. Y.; Guo, P.; Guo, Z. Y.; Li, L.; Sun, T. R.; Liu, D. P.; Tian, L.; Zu, G. Q.; Xiong, L. Z.; Zhang, J. H. et al. Retina-inspired artificial synapses with ultraviolet to near-infrared broadband responses for energy-efficient neuromorphic visual systems. Adv. Funct. Mater. 2023, 33, 2302885.
Zhou, F. C.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664–671.
Gu, L. L.; Poddar, S.; Lin, Y. J.; Long, Z. H.; Zhang, D. Q.; Zhang, Q. P.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282.
Zhang, J. Y.; Guo, Z. Y.; Sun, T. R.; Guo, P.; Liu, X.; Gao, H. Y.; Dai, S. L.; Xiong, L. Z.; Huang, J. Energy-efficient organic photoelectric synaptic transistors with environment-friendly CuInSe2 quantum dots for broadband neuromorphic computing. SmartMat 2024, 5, e1246.
Zhang, J. Y.; Shi, Q. Q.; Wang, R. Z.; Zhang, X.; Li, L.; Zhang, J. H.; Tian, L.; Xiong, L. Z.; Huang, J. Spectrum-dependent photonic synapses based on 2D imine polymers for power-efficient neuromorphic computing. InfoMat 2021, 3, 904–916.
Yu, H. Y.; Zhao, X. L.; Tan, M. Y.; Wang, B.; Zhang, M. X.; Wang, X.; Guo, S. L.; Tong, Y.; Tang, Q. X.; Liu, Y. C. Ultraflexible and ultrasensitive near-infrared organic phototransistors for hemispherical biomimetic eyes. Adv. Funct. Mater. 2022, 32, 2206765.
Chen, H.; Hou, Y. Q.; Shi, Y. H.; Zhang, Y. C.; Wang, S.; Peng, Q.; Huang, H. Organic all-photonic artificial synapses enabled by anti-stokes photoluminescence. J. Am. Chem. Soc. 2023, 145, 11988–11996.
Shan, L. T.; Chen, Q. Z.; Yu, R. J.; Gao, C. S.; Liu, L. J.; Guo, T. L.; Chen, H. P. A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition. Nat. Commun. 2023, 14, 2648.
Sun, L.; Qu, S. D.; Du, Y.; Yang, L.; Li, Y.; Wang, Z. X.; Xu, W. T. Bio-inspired vision and neuromorphic image processing using printable metal oxide photonic synapses. ACS Photonics 2023, 10, 242–252.
Gao, C. S.; Yang, H. H.; Li, E. L.; Yan, Y. J.; He, L. H.; Chen, H. P.; Lin, Z. X.; Guo, T. L. Heterostructured vertical organic transistor for high-performance optoelectronic memory and artificial synapse. ACS Photonics 2021, 8, 3094–3103.
Guo, Z. Y.; Zhang, J. Y.; Yang, B.; Li, L.; Liu, X.; Xu, Y. T.; Wu, Y.; Guo, P.; Sun, T. R.; Dai, S. L. et al. Organic high-temperature synaptic phototransistors for energy-efficient neuromorphic computing. Adv. Mater. 2024, 36, 2310155.
Chen, Y. C.; Li, Y.; Niu, S. F.; Yang, X.; Dou, W. J.; Shan, C. X.; Shen, G. Z. High temperature resistant solar-blind ultraviolet photosensor for neuromorphic computing and cryptography. Adv. Funct. Mater. 2024, 34, 2315383.
Zhu, S. R.; Xie, T.; Lv, Z. Y.; Leng, Y. B.; Zhang, Y. Q.; Xu, R. Z.; Qin, J.; Zhou, Y.; Roy, V. A. L.; Han, S. T. Hierarchies in visual pathway: Functions and inspired artificial vision. Adv. Mater. 2024, 36, e2301986.
Gong, Y.; Xie, P.; Xing, X. C.; Lv, Z. Y.; Xie, T.; Zhu, S. R.; Hsu, H. H.; Zhou, Y.; Han, S. T. Bioinspired artificial visual system based on 2D WSe2 synapse array. Adv. Funct. Mater. 2023, 33, 2303539.
Zhang, Y. C.; Chen, H.; Sun, W. Q.; Hou, Y. Q.; Cai, Y. H.; Huang, H. All-photonic synapses for biomimetic ocular system. Adv. Funct. Mater. 2024, 34, 2409149.
Wang, S.; Chen, H.; Liu, T. H.; Wei, Y. N.; Yao, G.; Lin, Q. J.; Han, X.; Zhang, C. F.; Huang, H. Retina-inspired organic photonic synapses for selective detection of SWIR light. Angew. Chem., Int. Ed. 2023, 62, e202213733.
Wang, C. Y.; Bian, Y. S.; Liu, K.; Qin, M. C.; Zhang, F.; Zhu, M. L.; Shi, W. K.; Shao, M. C.; Shang, S. C.; Hong, J. X. et al. Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors. Nat. Commun. 2024, 15, 3123.
Chen, J. W.; Zhou, Z.; Kim, B. J.; Zhou, Y.; Wang, Z. Q.; Wan, T. Q.; Yan, J. M.; Kang, J. F.; Ahn, J. H.; Chai, Y. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 2023, 18, 882–888.
Ren, Y. Y.; Bu, X. B.; Wang, M.; Gong, Y.; Wang, J. J.; Yang, Y. Y.; Li, G. J.; Zhang, M.; Zhou, Y.; Han, S. T. Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity. Nat. Commun. 2022, 13, 5585.
Xu, F.; Zhang, C.; Zhao, X. L.; Yu, H. Y.; Zhao, G. D.; Li, J. T.; Wang, B.; Tong, Y. H.; Tang, Q. X.; Liu, Y. C. Intrinsically stretchable photonic synaptic transistors for retina-like visual image systems. J. Mater. Chem. C 2022, 10, 10586–10594.
Wang, C. Y.; Liu, Y. Q.; Guo, Y. L. Intrinsically flexible organic phototransistors for bioinspired neuromorphic sensory system. Wearable Electron. 2024, 1, 41–52.
Xie, T. H.; Wang, Q. N.; Li, M.; Fang, Y. X.; Li, G.; Shao, S. S.; Yu, W. B.; Wang, S. Y.; Gu, W. B.; Zhao, C. et al. Carbon nanotube optoelectronic synapse transistor arrays with ultra-low power consumption for stretchable neuromorphic vision systems. Adv. Funct. Mater. 2023, 33, 2303970.
Sun, L. F.; Wang, Z. R.; Jiang, J. B.; Kim, Y.; Joo, B.; Zheng, S. J.; Lee, S.; Yu, W. J.; Kong, B. S.; Yang, H. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 2021, 7, eabg1455.
Zhang, Z. F.; Zhao, X. L.; Zhang, X. M.; Hou, X. H.; Ma, X. L.; Tang, S. Z.; Zhang, Y.; Xu, G. W.; Liu, Q.; Long, S. B. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 2022, 13, 6590.
Liang, X. P.; Tang, J. S.; Zhong, Y. N.; Gao, B.; Qian, H.; Wu, H. Q. Physical reservoir computing with emerging electronics. Nat. Electron. 2024, 7, 193–206.
Wu, X. S.; Shi, S. H.; Liang, B. S.; Dong, Y.; Yang, R. M.; Ji, R. D.; Wang, Z. R.; Huang, W. G. Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci. Adv. 2024, 10, eadn4524.
Wu, X. S.; Wang, S. C.; Huang, W.; Dong, Y.; Wang, Z. R.; Huang, W. G. Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning. Nat. Commun. 2023, 14, 468.
Xu, J.; Wang, S. H.; Wang, G. J. N.; Zhu, C. X.; Luo, S. C.; Jin, L. H.; Gu, X. D.; Chen, S. C.; Feig, V. R.; To, J. W. F. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355, 59–64.
Dai, Y. H.; Dai, S. L.; Li, N.; Li, Y.; Moser, M.; Strzalka, J.; Prominski, A.; Liu, Y. D.; Zhang, Q. T.; Li, S. S. et al. Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater. 2022, 34, e2201178.
Liu, X.; Dai, S. L.; Zhao, W. D.; Zhang, J. Y.; Guo, Z. Y.; Wu, Y.; Xu, Y. T.; Sun, T. R.; Li, L.; Guo, P. et al. All-photolithography fabrication of ion-gated flexible organic transistor array for multimode neuromorphic computing. Adv. Mater. 2024, 36, 2312473.
Wu, Y.; Dai, S. L.; Liu, X.; Guo, P.; Zhang, J. Y.; Sun, T. R.; Guo, Z. Y.; Xu, Y. T.; Liang, H. X.; Xiong, L. Z. et al. Optical microlithography of perovskite quantum dots/organic semiconductor heterojunctions for neuromorphic photosensors. Adv. Funct. Mater. 2024, 34, 2315175.
Kavalali, E. T. The mechanisms and functions of spontaneous neurotransmitter release. Nat. Rev. Neurosci. 2015, 16, 5–16.
Gao, Y. S.; Zhang, J. Y.; Liu, D. P.; Sun, T. R.; Wang, J.; Li, L.; Dai, S. L.; Zhang, J. H.; Yang, Z. L.; Huang, J. Artificial synapses based on organic electrochemical transistors with self-healing dielectric layers. Chin. Chem. Lett. 2024, 35, 108582.
Hua, Z. K.; Yang, B.; Zhang, J. Y.; Hao, D. D.; Guo, P.; Liu, J.; Jiang, L.; Huang, J. Monolayer molecular crystals for low-energy consumption optical synaptic transistors. Nano Res. 2022, 15, 7639–7645.
Guo, P.; Zhang, J. Y.; Liu, D. P.; Wang, R. Z.; Li, L.; Tian, L.; Huang, J. Optoelectronic synaptic transistors based on solution-processable organic semiconductors and CsPbCl3 quantum dots for visual nociceptor simulation and neuromorphic computing. ACS Appl. Mater. Interfaces 2023, 15, 51483–51491.
Kim, M. H.; Jeong, M. W.; Kim, J. S.; Nam, T. U.; Vo, N. T. P.; Jin, L. H.; Lee, T. I.; Oh, J. Y. Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors. Sci. Adv. 2022, 8, eade2988.
Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y. H.; Yu, K. J.; Cheng, H. Y.; Shi, M. X.; Bian, Z. G.; Liu, Z. J.; Kim, Y. S. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944.
Tavakoli, M.; Malakooti, M. H.; Paisana, H.; Ohm, Y.; Marques, D. G.; Alhais Lopes, P.; Piedade, A. P.; De Almeida, A. T.; Majidi, C. EGaIn-assisted room-temperature sintering of silver nanoparticles for stretchable, inkjet-printed, thin-film electronics. Adv. Mater. 2018, 30, 1801852.
536
Views
103
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).