Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Anion exchange membrane water electrolyzers (AEMWEs) are emerging as a promising technology due to the high performance and low cost. However, the development of highly active and stable non-precious metal-based catalysts for the anodic oxygen evolution reaction (OER) remains a great challenge. In this study, we present a top-down construction strategy for anode design, resulting in a hierarchical NiFe layered double hydroxide (LDH)/N-doped Co/nickel foam (NF) electrode synthesized via a hydrothermal-gas phase nitridation–electrodeposition method. This electrode features NiFe LDH nanoplates grown on N-doped Co nanowires supported by nickel foam substrates. The NiFe LDH/N-doped Co/NF electrode demonstrates exceptional performance, achieving a current density of 100 mA·cm−2 at a low overpotential of 262 mV with minimal attenuation of just 7 mV after 100 h of operation. When assembled into an AEMWE, the system requires only 1.63 V to achieve a current density of 1 A·cm−2, surpassing the performance of most reported catalysts. The N-doped Co nanowires are shown to enhance both activity and stability by increasing the electrode’s surface area and reinforcing the catalyst–support interaction.
Sun, H. C.; Zhang, W.; Li, J. G.; Li, Z. S.; Ao, X.; Xue, K. H.; Ostrikov, K. K.; Tang, J.; Wang, C. D. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B 2021, 284, 119740.
Zhang, H.; Wang, J.; Qin, F. Q.; Liu, H. L.; Wang, C. Erratum to: V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Res. 2022, 15, 7758.
Cheng, J. L.; Wang, D. S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chin. J. Catal. 2022, 43, 1380–1398.
Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2024, 24, e202415755.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of Silane to Silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.
Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.
Zhong, B.; Kuang, P. Y.; Wang, L. X.; Yu, J. G. Hierarchical porous nickel supported NiFeO x H y nanosheets for efficient and robust oxygen evolution electrocatalyst under industrial condition. Appl. Catal. B 2021, 299, 120668.
Lin, Y.; Cui, X. J.; Zhao, Y. L.; Liu, Z. C.; Zhang, G. X.; Pan, Y. Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis. Nano Res. 2023, 16, 8765–8772.
Zhou, C. A.; Ma, K.; Zhuang, Z. C.; Ran, M. L.; Shu, G. Q.; Wang, C.; Song, L.; Zheng, L. R.; Yue, H. R.; Wang, D. S. Tuning the local environment of Pt species at CNT@MO2− x (M = Sn and Ce) heterointerfaces for boosted alkaline hydrogen evolution. J. Am. Chem. Soc. 2024, 146, 21453–21465.
Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.
Zheng, X. B.; Yang, J. R.; Xu, X.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Wang, G. X. Deciphering cationic and anionic overoxidation: Key insights into the intrinsic structural degradation of catalysts. Adv. Energy Mater. 2024, 14, 2401227.
Feng, L.; Xue, H. G. Advances in transition-metal phosphide applications in electrochemical energy storage and catalysis. ChemElectroChem 2017, 4, 20–34.
Luo, H. Z.; Zeng, Z. T.; Zeng, G. M.; Zhang, C.; Xiao, R.; Huang, D. L.; Lai, C.; Cheng, M.; Wang, W. J.; Xiong, W. P. et al. Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chem. Eng. J. 2020, 383, 123196.
Chen, P. Z.; Hu, X. L. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv. Energy Mater. 2020, 10, 2002285.
Wan, L.; Liu, J.; Lin, D. C.; Xu, Z.; Zhen, Y. H.; Pang, M. B.; Xu, Q.; Wang, B. G. 3D-ordered catalytic nanoarrays interlocked on anion exchange membranes for water electrolysis. Energy Environ. Sci. 2024, 17, 3396–3408.
Li, H. J. W.; Lin, Y.; Duan, J. Y.; Wen, Q. L.; Liu, Y. W.; Zhai, T. Y. Stability of electrocatalytic OER: From principle to application. Chem. Soc. Rev. 2024, 53, 10709–10740.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.
Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.
Gong, L. Q.; Yang, H.; Douka, A. I.; Yan, Y.; Xia, B. Y. Recent progress on NiFe-based electrocatalysts for alkaline oxygen evolution. Adv. Sustain. Syst. 2021, 5, 2000136.
Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.
Chen, Y. F.; Li, J. H.; Liu, T. T.; You, S. H.; Liu, P.; Li, F. J.; Gao, M. Q.; Chen, S. G.; Zhang, F. F. Constructing robust NiFe LDHs–NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting: One-step electrodeposition and surface reconstruction. Rare Met. 2023, 42, 2272–2283.
Shen, K. Y.; Tang, Y.; Zhou, Q. H.; Zhang, Y.; Ge, W.; Shai, X. X.; Deng, S. P.; Yang, P. Z.; Deng, S. K.; Wang, J. S. Metal-organic framework-derived S-NiFe PBA coupled with NiFe layered double hydroxides as Mott-Schottky electrocatalysts for efficient alkaline oxygen evolution reaction. Chem. Eng. J. 2023, 471, 144827.
Li, Y. X.; Liu, J. L.; Li, S. Q.; Peng, S. Q. Codecoration of phosphate and iron for improving oxygen evolution reaction of layered Ni(OH)2/NiOOH. ACS Catal. 2024, 14, 4807–4819.
Liu, S. Q.; Qi, W. L.; Liu, J.; Meng, X. L.; Adimi, S.; Attfield, J. P.; Yang, M. H. Modulating electronic structure to improve the solar to hydrogen efficiency of cobalt nitride with lattice doping. ACS Catal. 2023, 13, 2214–2222.
Song, Y. F.; Zhang, Z. Y.; Tian, H.; Bian, L.; Bai, Y.; Wang, Z. L. Corrosion engineering towards NiFe-layered double hydroxide macroporous arrays with enhanced activity and stability for oxygen evolution reaction. Chem.—Eur. J. 2023, 29, e202301124.
Zhang, Y.; Feng, B.; Yan, M. L.; Shen, Z.; Chen, Y. Q.; Tian, J. Y.; Xu, F. F.; Chen, G. H.; Wang, X. Z.; Yang, L. J. et al. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities. Nano Res. 2024, 17, 3769–3776.
Wang, Y. H.; Li, S. Q.; Hou, X.; Cui, T. T.; Zhuang, Z. C.; Zhao, Y. H.; Wang, H. Z.; Wei, W.; Xu, M.; Fu, Q. et al. Low-spin Fe3+ evoked by multiple defects with optimal intermediate adsorption attaining unparalleled performance in water oxidation. Adv. Mater. 2024, 14, 2412598.
Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.
Zheng, Z. C.; Wu, D.; Chen, G.; Zhang, N.; Wan, H.; Liu, X. H.; Ma, R. Z. Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. Carbon Energy 2022, 4, 901–913.
Xing, M. H.; Qiao, Z. L.; Zhu, S. K.; Xu, G. Q.; Yun, J.; Cao, D. P. Zipper-like interlocked heterostructure of NiFe layered double hydroxide-WN for super-stable oxygen evolution over 4500 h. Adv. Funct. Mater. 2024, 34, 2409559.
Wang, M.; Zhang, W. J.; Zhang, F. F.; Zhang, Z. H.; Tang, B.; Li, J. P.; Wang, X. G. Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production. ACS Catal. 2019, 9, 1489–1502.
Bhosale, A. C.; Ghosh, P. C.; Assaud, L. Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review. Renew. Sustain. Energy Rev. 2020, 133, 110286.
Wang, B.; Tang, C.; Wang, H. F.; Chen, X.; Cao, R.; Zhang, Q. A Nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution. Adv. Mater. 2019, 31, 1805658.
Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.
Jeon, S. S.; Lim, J.; Kang, P. W.; Lee, J. W.; Kang, G.; Lee, H. Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS Appl. Mater. Interfaces 2021, 13, 37179–37186.
Long, X.; Wang, Z. L.; Xiao, S.; An, Y. M.; Yang, S. H. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213–226.
Todoroki, N.; Kudo, R.; Hayashi, K.; Yokoi, M.; Naraki, N.; Wadayama, T. Improving the oxygen evolution activity and stability of Nb-doped TiO2-supported RuO2 by a SnO2 interlayer: A model catalyst study on single-crystal oxide heterostructures. ACS Catal. 2023, 13, 11433–11440.
Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.
Lv, J. J.; Wang, L. M.; Li, R. S.; Zhang, K. Y.; Zhao, D. F.; Li, Y. Q.; Li, X. J.; Huang, X. B.; Wang, G. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction. ACS Catal. 2021, 11, 14338–14351.
Wang, M. H.; Lou, Z. X.; Wu, X. F.; Liu, Y. W.; Zhao, J. Y.; Sun, K. Z.; Li, W. X.; Chen, J. C.; Yuan, H. Y.; Zhu, M. H. et al. G. Operando high-valence Cr-modified NiFe hydroxides for water oxidation. Small 2022, 18, 2200303.
He, L. X.; Wang, N.; Sun, B. L.; Zhong, L.; Yao, M. Q.; Hu, W. C.; Komarneni, S. High-entropy FeCoNiMn (oxy)hydroxide as high-performance electrocatalyst for OER and boosting clean carrier production under quasi-industrial condition. J. Clean. Prod. 2022, 356, 131680.
Chen, M. P.; Liu, D.; Feng, J. X.; Zhou, P. F.; Qiao, L. L.; Feng, W. L.; Chen, Y. Y.; Ng, K. W.; Wang, S. P.; Ip, W. F. et al. In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis. Chem. Eng. J. 2022, 443, 136432.
Du, Y.; Zhou, Y.; Zhao, Q.; Zhou, Y. J.; Chen, Y. K.; Jiang, T. S. Nano-assembly hierarchical Fe-Ni-Se/Cu(OH)2 with induced interface engineering as highly efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2022, 413, 140186.
Zhang, H. L.; Li, Y. Y.; Zhao, J. Y.; Zhang, Y.; Zhang, H. T.; Song, R. Hierarchical Cu2O/NiFeCo layered double hydroxide nanoarrays on copper foam obtained by a self-sacrificial templated route for a highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 2023, 630, 695–703.
Chen, B. J.; Humayun, M.; Li, Y. D.; Zhang, H. M.; Sun, H. C.; Wu, Y.; Wang, C. D. Constructing hierarchical fluffy CoO-Co4N@NiFe-LDH nanorod arrays for highly effective overall water splitting and urea electrolysis. ACS Sustain. Chem. Eng. 2021, 9, 14180–14192.
Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.
Li, J. H.; Wang, L. L.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.
Zeng, L. Y.; Sun, K. A.; Wang, X. B.; Liu, Y. Q.; Pan, Y.; Liu, Z.; Cao, D. W.; Song, Y.; Liu, S. H.; Liu, C. G. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 2018, 51, 26–36.
Zaffora, A.; Megna, B.; Seminara, B.; Di Franco, F.; Santamaria, M. Ni,Fe,Co-LDH coated porous transport layers for zero-gap alkaline water electrolyzers. Nanomaterials 2024, 14, 407.
Zheng, Y. W.; Serban, A.; Zhang, H. Y.; Chen, N. J.; Song, F.; Hu, X. L. Anion exchange ionomers enable sustained pure-water electrolysis using platinum-group-metal-free electrocatalysts. ACS Energy Lett. 2023, 8, 5018–5024.
Zhang, L. Y.; Xu, Q. C.; Wen, S. T.; Zhang, H. X.; Chen, L.; Jiang, H.; Li, C. Z. Recycling spent ternary cathodes to oxygen evolution catalysts for pure water anion-exchange membrane electrolysis. ACS Nano 2024, 18, 22454–22464.
Yang, X. X.; Liang, J. S.; Shi, Q. R.; Zachman, M. J.; Kabir, S.; Liang, J. W.; Zhu, J.; Slenker, B.; Pupucevski, M.; Macauley, N. et al. Regulating the third metal to design and engineer multilayered NiFeM (M: Co, Mn, and Cu) nanofoam anode catalysts for anion-exchange membrane water electrolyzers. Adv. Energy Mater. 2024, 14, 2400029.
Thangavel, P.; Lee, H.; Kong, T. H.; Kwon, S.; Tayyebi, A.; Lee, J. H.; Choi, S. M.; Kwon, Y. Immobilizing low-cost metal nitrides in electrochemically reconstructed platinum group metal (PGM)-free oxy-(hydroxides) surface for exceptional OER kinetics in anion exchange membrane water electrolysis. Adv. Energy Mater. 2023, 13, 2203401.
Abed, J.; Ahmadi, S.; Laverdure, L.; Abdellah, A.; O’Brien, C. P.; Cole, K.; Sobrinho, P.; Sinton, D.; Higgins, D.; Mosey, N. J. et al. In situ formation of nano Ni-Co oxyhydroxide enables water oxidation electrocatalysts durable at high current densities. Adv. Mater. 2021, 33, 2103812.
Shi, Y.; Song, L. M.; Liu, Y.; Wang, T. T.; Li, C. X.; Lai, J. P.; Wang, L. Dual cocatalytic sites synergize NiFe layered double hydroxide to boost oxygen evolution reaction in anion exchange membrane water electrolyzer. Adv. Energy Mater. 2024, 14, 2402046.
Jiang, W.; Faid, A. Y.; Gomes, B. F.; Galkina, I.; Xia, L.; Lobo, C. M. S.; Desmau, M.; Borowski, P.; Hartmann, H.; Maljusch, A. et al. Composition-dependent morphology, structure, and catalytical performance of nickel-iron layered double hydroxide as highly-efficient and stable anode catalyst in anion exchange membrane water electrolysis. Adv. Energy Mater. 2022, 32, 2203520.
1064
Views
465
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).