AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (21.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hierarchical NiFe LDH/N-doped Co/nickel foam as highly active oxygen evolution reaction electrode for anion exchange membrane water electrolysis

Jiansheng Wang1,2Yongsheng Wang1,2Xiaoxuan Guo1,2Mengting Chen1,2Jinjie Fang3Xiaojie Li3Wei Zhu1,2( )Zhongbin Zhuang1,2( )
State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
PetroChina Shenzhen New Energy Research Institute Co., Ltd., Shenzhen 518054, China
Show Author Information

Graphical Abstract

We present a top-down construction strategy for anode design, resulting in a hierarchical NiFe layered double hydroxide (LDH)/N-doped Co/nickel foam (NF) structure that demonstrates exceptional performance for oxygen evolution reaction in anion exchange membrane water electrolyzers.

Abstract

Anion exchange membrane water electrolyzers (AEMWEs) are emerging as a promising technology due to the high performance and low cost. However, the development of highly active and stable non-precious metal-based catalysts for the anodic oxygen evolution reaction (OER) remains a great challenge. In this study, we present a top-down construction strategy for anode design, resulting in a hierarchical NiFe layered double hydroxide (LDH)/N-doped Co/nickel foam (NF) electrode synthesized via a hydrothermal-gas phase nitridation–electrodeposition method. This electrode features NiFe LDH nanoplates grown on N-doped Co nanowires supported by nickel foam substrates. The NiFe LDH/N-doped Co/NF electrode demonstrates exceptional performance, achieving a current density of 100 mA·cm−2 at a low overpotential of 262 mV with minimal attenuation of just 7 mV after 100 h of operation. When assembled into an AEMWE, the system requires only 1.63 V to achieve a current density of 1 A·cm−2, surpassing the performance of most reported catalysts. The N-doped Co nanowires are shown to enhance both activity and stability by increasing the electrode’s surface area and reinforcing the catalyst–support interaction.

Electronic Supplementary Material

Download File(s)
7190_ESM.pdf (2.8 MB)

References

[1]

Sun, H. C.; Zhang, W.; Li, J. G.; Li, Z. S.; Ao, X.; Xue, K. H.; Ostrikov, K. K.; Tang, J.; Wang, C. D. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B 2021, 284, 119740.

[2]

Zhang, H.; Wang, J.; Qin, F. Q.; Liu, H. L.; Wang, C. Erratum to: V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Res. 2022, 15, 7758.

[3]

Cheng, J. L.; Wang, D. S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chin. J. Catal. 2022, 43, 1380–1398.

[4]

Gao, Y.; Yang, C. D.; Sun, F. L.; He, D. P.; Wang, X. Q.; Chen, J.; Zheng, X. B.; Liu, R. C.; Pan, H.; Wang, D. S. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem., Int. Ed. 2024, 24, e202415755.

[5]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of Silane to Silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

[6]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e202308800.

[7]

Zhong, B.; Kuang, P. Y.; Wang, L. X.; Yu, J. G. Hierarchical porous nickel supported NiFeO x H y nanosheets for efficient and robust oxygen evolution electrocatalyst under industrial condition. Appl. Catal. B 2021, 299, 120668.

[8]

Lin, Y.; Cui, X. J.; Zhao, Y. L.; Liu, Z. C.; Zhang, G. X.; Pan, Y. Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis. Nano Res. 2023, 16, 8765–8772.

[9]

Zhou, C. A.; Ma, K.; Zhuang, Z. C.; Ran, M. L.; Shu, G. Q.; Wang, C.; Song, L.; Zheng, L. R.; Yue, H. R.; Wang, D. S. Tuning the local environment of Pt species at CNT@MO2− x (M = Sn and Ce) heterointerfaces for boosted alkaline hydrogen evolution. J. Am. Chem. Soc. 2024, 146, 21453–21465.

[10]

Zheng, X. B.; Yang, J. R.; Li, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Chen, S. H.; Zhuang, Z. C.; Lai, W. H.; Dou, S. X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

[11]

Zheng, X. B.; Yang, J. R.; Xu, X.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Wang, G. X. Deciphering cationic and anionic overoxidation: Key insights into the intrinsic structural degradation of catalysts. Adv. Energy Mater. 2024, 14, 2401227.

[12]

Feng, L.; Xue, H. G. Advances in transition-metal phosphide applications in electrochemical energy storage and catalysis. ChemElectroChem 2017, 4, 20–34.

[13]

Luo, H. Z.; Zeng, Z. T.; Zeng, G. M.; Zhang, C.; Xiao, R.; Huang, D. L.; Lai, C.; Cheng, M.; Wang, W. J.; Xiong, W. P. et al. Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chem. Eng. J. 2020, 383, 123196.

[14]

Chen, P. Z.; Hu, X. L. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv. Energy Mater. 2020, 10, 2002285.

[15]

Wan, L.; Liu, J.; Lin, D. C.; Xu, Z.; Zhen, Y. H.; Pang, M. B.; Xu, Q.; Wang, B. G. 3D-ordered catalytic nanoarrays interlocked on anion exchange membranes for water electrolysis. Energy Environ. Sci. 2024, 17, 3396–3408.

[16]

Li, H. J. W.; Lin, Y.; Duan, J. Y.; Wen, Q. L.; Liu, Y. W.; Zhai, T. Y. Stability of electrocatalytic OER: From principle to application. Chem. Soc. Rev. 2024, 53, 10709–10740.

[17]

Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.

[18]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[19]

Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.

[20]

Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

[21]

Gong, L. Q.; Yang, H.; Douka, A. I.; Yan, Y.; Xia, B. Y. Recent progress on NiFe-based electrocatalysts for alkaline oxygen evolution. Adv. Sustain. Syst. 2021, 5, 2000136.

[22]

Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.

[23]

Chen, Y. F.; Li, J. H.; Liu, T. T.; You, S. H.; Liu, P.; Li, F. J.; Gao, M. Q.; Chen, S. G.; Zhang, F. F. Constructing robust NiFe LDHs–NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting: One-step electrodeposition and surface reconstruction. Rare Met. 2023, 42, 2272–2283.

[24]

Shen, K. Y.; Tang, Y.; Zhou, Q. H.; Zhang, Y.; Ge, W.; Shai, X. X.; Deng, S. P.; Yang, P. Z.; Deng, S. K.; Wang, J. S. Metal-organic framework-derived S-NiFe PBA coupled with NiFe layered double hydroxides as Mott-Schottky electrocatalysts for efficient alkaline oxygen evolution reaction. Chem. Eng. J. 2023, 471, 144827.

[25]

Li, Y. X.; Liu, J. L.; Li, S. Q.; Peng, S. Q. Codecoration of phosphate and iron for improving oxygen evolution reaction of layered Ni(OH)2/NiOOH. ACS Catal. 2024, 14, 4807–4819.

[26]

Liu, S. Q.; Qi, W. L.; Liu, J.; Meng, X. L.; Adimi, S.; Attfield, J. P.; Yang, M. H. Modulating electronic structure to improve the solar to hydrogen efficiency of cobalt nitride with lattice doping. ACS Catal. 2023, 13, 2214–2222.

[27]

Song, Y. F.; Zhang, Z. Y.; Tian, H.; Bian, L.; Bai, Y.; Wang, Z. L. Corrosion engineering towards NiFe-layered double hydroxide macroporous arrays with enhanced activity and stability for oxygen evolution reaction. Chem.—Eur. J. 2023, 29, e202301124.

[28]

Zhang, Y.; Feng, B.; Yan, M. L.; Shen, Z.; Chen, Y. Q.; Tian, J. Y.; Xu, F. F.; Chen, G. H.; Wang, X. Z.; Yang, L. J. et al. Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities. Nano Res. 2024, 17, 3769–3776.

[29]

Wang, Y. H.; Li, S. Q.; Hou, X.; Cui, T. T.; Zhuang, Z. C.; Zhao, Y. H.; Wang, H. Z.; Wei, W.; Xu, M.; Fu, Q. et al. Low-spin Fe3+ evoked by multiple defects with optimal intermediate adsorption attaining unparalleled performance in water oxidation. Adv. Mater. 2024, 14, 2412598.

[30]

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

[31]

Zheng, Z. C.; Wu, D.; Chen, G.; Zhang, N.; Wan, H.; Liu, X. H.; Ma, R. Z. Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. Carbon Energy 2022, 4, 901–913.

[32]

Xing, M. H.; Qiao, Z. L.; Zhu, S. K.; Xu, G. Q.; Yun, J.; Cao, D. P. Zipper-like interlocked heterostructure of NiFe layered double hydroxide-WN for super-stable oxygen evolution over 4500 h. Adv. Funct. Mater. 2024, 34, 2409559.

[33]

Wang, M.; Zhang, W. J.; Zhang, F. F.; Zhang, Z. H.; Tang, B.; Li, J. P.; Wang, X. G. Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production. ACS Catal. 2019, 9, 1489–1502.

[34]

Bhosale, A. C.; Ghosh, P. C.; Assaud, L. Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review. Renew. Sustain. Energy Rev. 2020, 133, 110286.

[35]

Wang, B.; Tang, C.; Wang, H. F.; Chen, X.; Cao, R.; Zhang, Q. A Nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution. Adv. Mater. 2019, 31, 1805658.

[36]

Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.

[37]

Jeon, S. S.; Lim, J.; Kang, P. W.; Lee, J. W.; Kang, G.; Lee, H. Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers. ACS Appl. Mater. Interfaces 2021, 13, 37179–37186.

[38]

Long, X.; Wang, Z. L.; Xiao, S.; An, Y. M.; Yang, S. H. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213–226.

[39]

Todoroki, N.; Kudo, R.; Hayashi, K.; Yokoi, M.; Naraki, N.; Wadayama, T. Improving the oxygen evolution activity and stability of Nb-doped TiO2-supported RuO2 by a SnO2 interlayer: A model catalyst study on single-crystal oxide heterostructures. ACS Catal. 2023, 13, 11433–11440.

[40]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[41]

Lv, J. J.; Wang, L. M.; Li, R. S.; Zhang, K. Y.; Zhao, D. F.; Li, Y. Q.; Li, X. J.; Huang, X. B.; Wang, G. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction. ACS Catal. 2021, 11, 14338–14351.

[42]

Wang, M. H.; Lou, Z. X.; Wu, X. F.; Liu, Y. W.; Zhao, J. Y.; Sun, K. Z.; Li, W. X.; Chen, J. C.; Yuan, H. Y.; Zhu, M. H. et al. G. Operando high-valence Cr-modified NiFe hydroxides for water oxidation. Small 2022, 18, 2200303.

[43]

He, L. X.; Wang, N.; Sun, B. L.; Zhong, L.; Yao, M. Q.; Hu, W. C.; Komarneni, S. High-entropy FeCoNiMn (oxy)hydroxide as high-performance electrocatalyst for OER and boosting clean carrier production under quasi-industrial condition. J. Clean. Prod. 2022, 356, 131680.

[44]

Chen, M. P.; Liu, D.; Feng, J. X.; Zhou, P. F.; Qiao, L. L.; Feng, W. L.; Chen, Y. Y.; Ng, K. W.; Wang, S. P.; Ip, W. F. et al. In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis. Chem. Eng. J. 2022, 443, 136432.

[45]

Du, Y.; Zhou, Y.; Zhao, Q.; Zhou, Y. J.; Chen, Y. K.; Jiang, T. S. Nano-assembly hierarchical Fe-Ni-Se/Cu(OH)2 with induced interface engineering as highly efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2022, 413, 140186.

[46]

Zhang, H. L.; Li, Y. Y.; Zhao, J. Y.; Zhang, Y.; Zhang, H. T.; Song, R. Hierarchical Cu2O/NiFeCo layered double hydroxide nanoarrays on copper foam obtained by a self-sacrificial templated route for a highly efficient oxygen evolution reaction. J. Colloid Interface Sci. 2023, 630, 695–703.

[47]

Chen, B. J.; Humayun, M.; Li, Y. D.; Zhang, H. M.; Sun, H. C.; Wu, Y.; Wang, C. D. Constructing hierarchical fluffy CoO-Co4N@NiFe-LDH nanorod arrays for highly effective overall water splitting and urea electrolysis. ACS Sustain. Chem. Eng. 2021, 9, 14180–14192.

[48]

Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.

[49]

Li, J. H.; Wang, L. L.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Res. 2022, 15, 4986–4995.

[50]

Zeng, L. Y.; Sun, K. A.; Wang, X. B.; Liu, Y. Q.; Pan, Y.; Liu, Z.; Cao, D. W.; Song, Y.; Liu, S. H.; Liu, C. G. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 2018, 51, 26–36.

[51]

Zaffora, A.; Megna, B.; Seminara, B.; Di Franco, F.; Santamaria, M. Ni,Fe,Co-LDH coated porous transport layers for zero-gap alkaline water electrolyzers. Nanomaterials 2024, 14, 407.

[52]

Zheng, Y. W.; Serban, A.; Zhang, H. Y.; Chen, N. J.; Song, F.; Hu, X. L. Anion exchange ionomers enable sustained pure-water electrolysis using platinum-group-metal-free electrocatalysts. ACS Energy Lett. 2023, 8, 5018–5024.

[53]

Zhang, L. Y.; Xu, Q. C.; Wen, S. T.; Zhang, H. X.; Chen, L.; Jiang, H.; Li, C. Z. Recycling spent ternary cathodes to oxygen evolution catalysts for pure water anion-exchange membrane electrolysis. ACS Nano 2024, 18, 22454–22464.

[54]

Yang, X. X.; Liang, J. S.; Shi, Q. R.; Zachman, M. J.; Kabir, S.; Liang, J. W.; Zhu, J.; Slenker, B.; Pupucevski, M.; Macauley, N. et al. Regulating the third metal to design and engineer multilayered NiFeM (M: Co, Mn, and Cu) nanofoam anode catalysts for anion-exchange membrane water electrolyzers. Adv. Energy Mater. 2024, 14, 2400029.

[55]

Thangavel, P.; Lee, H.; Kong, T. H.; Kwon, S.; Tayyebi, A.; Lee, J. H.; Choi, S. M.; Kwon, Y. Immobilizing low-cost metal nitrides in electrochemically reconstructed platinum group metal (PGM)-free oxy-(hydroxides) surface for exceptional OER kinetics in anion exchange membrane water electrolysis. Adv. Energy Mater. 2023, 13, 2203401.

[56]

Abed, J.; Ahmadi, S.; Laverdure, L.; Abdellah, A.; O’Brien, C. P.; Cole, K.; Sobrinho, P.; Sinton, D.; Higgins, D.; Mosey, N. J. et al. In situ formation of nano Ni-Co oxyhydroxide enables water oxidation electrocatalysts durable at high current densities. Adv. Mater. 2021, 33, 2103812.

[57]

Shi, Y.; Song, L. M.; Liu, Y.; Wang, T. T.; Li, C. X.; Lai, J. P.; Wang, L. Dual cocatalytic sites synergize NiFe layered double hydroxide to boost oxygen evolution reaction in anion exchange membrane water electrolyzer. Adv. Energy Mater. 2024, 14, 2402046.

[58]

Jiang, W.; Faid, A. Y.; Gomes, B. F.; Galkina, I.; Xia, L.; Lobo, C. M. S.; Desmau, M.; Borowski, P.; Hartmann, H.; Maljusch, A. et al. Composition-dependent morphology, structure, and catalytical performance of nickel-iron layered double hydroxide as highly-efficient and stable anode catalyst in anion exchange membrane water electrolysis. Adv. Energy Mater. 2022, 32, 2203520.

Nano Research
Article number: 94907190
Cite this article:
Wang J, Wang Y, Guo X, et al. Hierarchical NiFe LDH/N-doped Co/nickel foam as highly active oxygen evolution reaction electrode for anion exchange membrane water electrolysis. Nano Research, 2025, 18(2): 94907190. https://doi.org/10.26599/NR.2025.94907190
Topics:

1064

Views

465

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 November 2024
Revised: 13 December 2024
Accepted: 13 December 2024
Published: 14 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return