Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
It is well reported that cellular ferritin reduces the intracellular oxidative stress by sequestering excess ferrous ions, preventing them from participating in Fenton reactions that generate damaging harmful reactive oxygen species (ROS). Here we show a novel property of the native human ferritin H subunit nanoparticles (HFn NPs), which can function as catalase by effectively decomposing H2O2 into H2O and O2 in vivo that plays an important role in maintaining cellular redox homeostasis and in disease resistance. It was revealed that the catalase-like activity of HFn can be greatly increased by loading iron ions within the cavity of HFn nanocage. Moreover, HFn and iron-loaded HFn (HFn-Fe) can largely eliminate the oxidative damage caused by excess H2O2 to live cells or Caenorhabditis elegans (C. elegans). Feeding HFn or HFn-Fe to C. elegans A30P Parkinson’s disease (PD) model significantly ameliorated the α-synuclein toxicity and alleviated the dendrite dysfunction in C. elegans PD models by substantively scavenging the in vivo H2O2. This work demonstrates that the revealed novel catalase-like property of native HFn and HFn-Fe NPs may play an important role in maintaining cellular redox homeostasis and can be used as an effective therapeutic strategy against neurodegenerative diseases caused by redox dysregulation.
Di, Y. F.; Deng, R. Z.; Liu, Z.; Mao, Y. L.; Gao, Y. K.; Zhao, Q. F.; Wang, S. L. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023, 303, 122391.
Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.
Wang, W. J.; Ruiz, J.; Ornelas, C.; Hamon, J. R. A career in catalysis: Didier astruc. ACS Catal. 2023, 13, 1574–1596.
Zheng, J. D.; Wu, Y. X.; Xing, D.; Zhang, T. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res. 2019, 12, 931–938.
Liu, X. L.; Pan, Y. C.; Yang, J. J.; Gao, Y. F.; Huang, T.; Luan, X. W.; Wang, Y. Z.; Song, Y. J. Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors. Nano Res. 2020, 13, 653–660.
Zhang, L.; Wang, H.; Qu, X. G. Biosystem-inspired engineering of nanozymes for biomedical applications. Adv. Mater. 2024, 36, 2211147.
Hsieh, H. L.; Yang, C. M. Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res. Int. 2013, 2013, 484613.
Limongi, D.; Baldelli, S. Redox imbalance and viral infections in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2016, 2016, 6547248.
Sies, H.; Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383.
Sies, H.; Belousov, V. V.; Chandel, N. S.; Davies, M. J.; Jones, D. P.; Mann, G. E.; Murphy, M. P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515.
Gao, C.; Bhattarai, P.; Chen, M.; Zhang, N. S.; Hameed, S.; Yue, X. L.; Dai, Z. F. Amphiphilic drug conjugates as nanomedicines for combined cancer therapy. Bioconjugate Chem. 2018, 29, 3967–3981.
Dharmaraja, A. T. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J. Med. Chem. 2017, 60, 3221–3240.
Madkour, L. H. Function of reactive oxygen species (ROS) inside the living organisms and sources of oxidants. Pharm. Sci. Anal. Res. J. 2019, 2, 180023.
El-Beltagi, H. S.; Mohamed, H. I. Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Not. Bot. Horti Agrobo. Cluj-Napoca 2013, 41, 44–57.
Lee, Y. M.; He, W. F.; Liou, Y. C. The redox language in neurodegenerative diseases: Oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis. 2021, 12, 58.
He, L.; He, T.; Farrar, S.; Ji, L. B.; Liu, T. Y.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 2017, 44, 532–553.
Kelley, E. E.; Khoo, N. K.; Hundley, N. J.; Malik, U. Z.; Freeman, B. A.; Tarpey, M. M. Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radical. Biol. Med. 2010, 48, 493–498.
Nisimoto, Y.; Diebold, B. A.; Cosentino-Gomes, D.; Lambeth, J. D. Nox4: A hydrogen peroxide-generating oxygen sensor. Biochemistry 2014, 53, 5111–5120.
Theil, E. C. Ferritin: Structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 1987, 56, 289–315.
Volatron, J.; Carn, F.; Kolosnjaj-Tabi, J.; Javed, Y.; Vuong, Q. L.; Gossuin, Y.; Ménager, C.; Luciani, N.; Charron, G.; Hémadi, M. et al. Ferritin protein regulates the degradation of iron oxide nanoparticles. Small 2017, 13, 1602030.
Palombarini, F.; Di Fabio, E.; Boffi, A.; Macone, A.; Bonamore, A. Ferritin nanocages for protein delivery to tumor cells. Molecules 2020, 25, 825.
Song, N. N.; Zhang, J. L.; Zhai, J.; Hong, J. J.; Yuan, C.; Liang, M. M. Ferritin: A multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery. Acc. Chem. Res. 2021, 54, 3313–3325.
Chen, F.; Ehlerding, E. B.; Cai, W. B. Theranostic nanoparticles. J. Nucl. Med. 2014, 55, 1919–1922.
Hong, J. J.; Li, K.; He, J. Y.; Liang, M. M. A new age of drug delivery: A comparative perspective of ferritin-drug conjugates (FDCs) and antibody-drug conjugates (ADCs). Bioconjugate Chem. 2024, 35, 1142–1147.
Zhang, J. L.; Yuan, C.; Kong, L. F.; Zhu, F. Y.; Yuan, W. Z.; Zhang, J. Y.; Hong, J. J.; Deng, F.; Chen, Q.; Chen, C. et al. H-ferritin-nanocaged gadolinium nanoparticles for ultra-sensitive MR molecular imaging. Theranostics 2024, 14, 1956–1965.
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.
Mu, X. Y.; Wang, J. Y.; He, H.; Li, Q. F.; Yang, B.; Wang, J. H.; Liu, H. L.; Gao, Y. L.; Ouyang, L. F.; Sun, S. et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. Sci. Adv. 2021, 7, eabk1210.
Stinchcomb, D. T.; Shaw, J. E.; Carr, S. H.; Hirsh, D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol. Cell. Biol. 1985, 5, 3484–3496.
van Schendel, R.; Romeijn, R.; Buijs, H.; Tijsterman, M. Preservation of lagging strand integrity at sites of stalled replication by Pol α-primase and 9-1-1 complex. Sci. Adv. 2021, 7, eabf2278.
Chai, Y. P.; Li, W.; Feng, G. X.; Yang, Y. H.; Wang, X. M.; Ou, G. S. Live imaging of cellular dynamics during Caenorhabditis elegans postembryonic development. Nat. Protoc. 2012, 7, 2090–2102.
Wang, X. M.; Wang, X. Y.; Li, L. D.; Wang, D. Q. Lifespan extension in Caenorhabditis elegans by DMSO is dependent on sir-2.1 and daf-16. Biochem. Biophys. Res. Commun. 2010, 400, 613–618.
Xie, J. X.; Zou, W.; Tugizova, M.; Shen, K.; Wang, X. M. MBL-1 and EEL-1 affect the splicing and protein levels of MEC-3 to control dendrite complexity. PLoS Genet. 2023, 19, e1010941.
Liang, M. M.; Fan, K. L.; Zhou, M.; Duan, D. M.; Zheng, J. Y.; Yang, D. L.; Feng, J.; Yan, X. Y. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. USA 2014, 111, 14900–14905.
Cui, Z.; Guo, F. Y.; Li, L.; Lu, F. P.; Jin, C. H.; Wang, X. M.; Liu, F. F. Brazilin-7-acetate, a novel potential drug of Parkinson's disease, hinders the formation of α-synuclein fibril, mitigates cytotoxicity, and decreases oxidative stress. Eur. J. Med. Chem. 2024, 264, 115965.
Lü, Z. Y.; Meng, J.; Sun, C. X.; Chen, C. Effect of Goji berries ( Lycium barbarum) on lifespan and spawning of Caenorhabditis elegans and its antioxidant capacity. Food Sci. 2019, 40, 183–188.
Kuwahara, T.; Koyama, A.; Gengyo-Ando, K.; Masuda, M.; Kowa, H.; Tsunoda, M.; Mitani, S.; Iwatsubo, T. Familial Parkinson mutant α-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J. Biol. Chem. 2006, 281, 334–340.
Zhao, Y. Z.; Liang, M. M.; Li, X.; Fan, K. L.; Xiao, J.; Li, Y. L.; Shi, H. C.; Wang, F.; Choi, H. S.; Cheng, D. F. et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano 2016, 10, 4184–4191.
Zhang, J. L.; Cheng, D. F.; He, J. Y.; Hong, J. J.; Yuan, C.; Liang, M. M. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat. Protoc. 2021, 16, 4878–4896.
Jia, W. H.; Tian, H. L.; Jiang, J. W.; Zhou, L.; Li, L.; Luo, M. C.; Ding, N.; Nice, E. C.; Huang, C. H.; Zhang, H. Y. Brain-targeted HFn-Cu-REGO nanoplatform for site-specific delivery and manipulation of autophagy and cuproptosis in glioblastoma. Small 2023, 19, 2205354.
Yuan, Z. W.; Wang, B.; Teng, Y. L.; Ho, W.; Hu, B.; Boakye-Yiadom, K. O.; Xu, X. Y.; Zhang, X. Q. Rational design of engineered H-ferritin nanoparticles with improved siRNA delivery efficacy across an in vitro model of the mouse BBB. Nanoscale 2022, 14, 6449–6464.
372
Views
68
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).