AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Two-dimensional lateral magnetic tunnel junction with ultrahigh tunneling magnetoresistance

Qiu-Qiu Li1Zhi-Fu Duan1Wen-Wen Liu2Rong Yang1 ( )Bo Li1,3,4 ( )Ke-Qiu Chen2 ( )
Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
Research Institute of Hunan University in Chongqing, Chongqing 401120, China
Shenzhen Research Institute of Hunan University, Shenzhen 518063, China
Show Author Information

Graphical Abstract

We have constructed a Li-CrSI/CrSI/Li-CrSI monolayer lateral magnetic tunnel junction (MTJ) and found the tunneling magnetoresistance (TMR) of the MTJ is 7.67 × 1014, which is significantly higher than that of any reported lateral MTJs based on two-dimensional (2D) materials.

Abstract

Giant tunneling magnetoresistance (TMR) has always been a pursuit in the research of magnetic tunnel junctions (MTJ). Two-dimensional (2D) magnetic materials have been used to construct lateral MTJ with high TMR. Here we investigated the crystal structure and magnetic property of CrSI monolayer, and found that it is a ferromagnetic semiconductor with a Curie temperature of about 180 K. The CrSI monolayer with Li adsorption (Li-CrSI) show ferromagnetic half-metallic with a high Curie temperature of 300 K. Further we designed a lateral Li-CrSI/CrSI/Li-CrSI monolayer MTJ. The TMR of the MTJs along b transport direction is 3 orders of magnitude times larger than that of the a transport direction, which should result from the different spin filtering ability along the two directions. The TMR of b transport direction in the MTJ is 7.67 × 1014, which is significantly higher than that of any reported lateral MTJs based on 2D materials. Our results provide a promising avenue for designing lateral MTJs with giant TMR and high Curie temperature.

Electronic Supplementary Material

Download File(s)
7188_ESM.pdf (742.1 KB)

References

[1]

Moodera, J. S.; Kinder, L. R.; Wong, T. M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273–3276.

[2]

Zhu, W. K.; Zhu, Y. M.; Zhou, T.; Zhang, X. P.; Lin, H. L.; Cui, Q. R.; Yan, F. G.; Wang, Z. A.; Deng, Y. C.; Yang, H. X. et al. Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Nat. Commun. 2023, 14, 5371.

[3]

Zhu, Y.; Chi, B. Y.; Jiang, L. N.; Guo, X. Y.; Yan, Y.; Han, X. F. Large tunneling electroresistance, tunneling magnetoresistance, and regulatable negative differential conductance in a van der Waals antiferroelectric multiferroic tunnel junction. Phys. Rev. Appl. 2023, 20, 034010.

[4]

Kajale, S. N.; Hanna, J.; Jang, K.; Sarkar, D. Two-dimensional magnetic materials for spintronic applications. Nano Res. 2024, 17, 743–762.

[5]

Liu, H. X.; Honda, Y.; Taira, T.; Matsuda, K. I.; Arita, M.; Uemura, T.; Yamamoto, M. Giant tunneling magnetoresistance in epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions by half-metallicity of Co2MnSi and coherent tunneling. Appl. Phys. Lett. 2012, 101, 132418.

[6]

Ikeda, S.; Hayakawa, J.; Ashizawa, Y.; Lee, Y. M.; Miura, K.; Hasegawa, H.; Tsunoda, M.; Matsukura, F.; Ohno, H. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 2008, 93, 082508.

[7]

Li, Q. Q.; Li, S.; Wu, D.; Ding, Z. K.; Cao, X. H.; Huang, L.; Pan, H.; Li, B.; Chen, K. Q.; Duan, X. D. Magnetic properties manipulation of CrTe2 bilayer through strain and self-intercalation. Appl. Phys. Lett. 2021, 119, 162402.

[8]

Cui, Q. R.; Liang, J. H.; Shao, Z. J.; Cui, P.; Yang, H. X. Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides. Phys. Rev. B 2020, 102, 094425.

[9]

He, R.; Wang, D.; Luo, N. N.; Zeng, J.; Chen, K. Q.; Tang, L. M. Nonrelativistic spin-momentum coupling in antiferromagnetic twisted bilayers. Phys. Rev. Lett. 2023, 130, 046401.

[10]

Zhang, T. L.; Du, J. T.; Wang, W. J.; Wu, K. M.; Yue, S.; Liu, X. F.; Shen, W. F.; Hu, C. G.; Wu, M. H.; Qu, Z. et al. Strong in-plane optical anisotropy in 2D van der Waals antiferromagnet VOCl. Nano Res. 2023, 16, 7481–7488.

[11]

Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.

[12]

Ng, J. Q.; Wu, Q. Y.; Ang, Y. S.; Ang, L. K. Electric field and strain tunable band gap and band alignments of MoSi2N4/MSe (M = In, Ga) van der Waals heterostructures. RSC Appl. Interfaces 2024, 1, 1156–1165.

[13]

Guo, X. Y.; Zhang, X. L.; Zhu, Y.; Liu, Y. H.; Han, X. F.; Yan, Y. Effective control of magnetism and transport properties of monolayer WV2N4 with two magnetic atomic layers and its van der Waals heterostructure. Appl. Phys. Lett. 2024, 125, 112402.

[14]

Wang, C.; Zhou, X. Y.; Zhou, L. W.; Pan, Y. H.; Lu, Z. Y.; Wan, X. G.; Wang, X. Q.; Ji, W. Bethe-slater-curve-like behavior and interlayer spin-exchange coupling mechanisms in two-dimensional magnetic bilayers. Phys. Rev. B 2020, 102, 020402.

[15]

Li, Q. Q.; Liu, W. W.; Ding, Z. K.; Pan, H.; Cao, X. H.; Xiao, W. H.; Luo, N. N.; Zeng, J.; Tang, L. M.; Li, B. et al. Stacking- and strain-dependent magnetism in Janus CrSTe bilayer. Appl. Phys. Lett. 2023, 122, 121902.

[16]

Song, T. C.; Cai, X. H.; Tu, M. W. Y.; Zhang, X. O.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu, L.; Taniguchi, T.; Watanabe, K. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218.

[17]

Chen, Y. L.; Samanta, K.; Shahed, N. A.; Zhang, H. J.; Fang, C.; Ernst, A.; Tsymbal, E. Y.; Parkin, S. S. P. Twist-assisted all-antiferromagnetic tunnel junction in the atomic limit. Nature 2024, 632, 1045–1051.

[18]

Yang, R. J.; Mei, L.; Lin, Z. Y.; Fan, Y. Y.; Lim, J.; Guo, J. H.; Liu, Y. J.; Shin, H. S.; Voiry, D.; Lu, Q. Y. et al. Intercalation in 2D materials and in situ studies. Nat. Rev. Chem. 2024, 8, 410–432.

[19]

Ilyas, A.; Wu, H. F.; Usman, T.; Khan, S. A.; Deng, R. R. The induction of half-metallicity and enhanced ferromagnetism in a Cr2Ge2Te6 monolayer via electron doping and alkali metal adsorption. J. Mater. Chem. C 2021, 9, 5952–5960.

[20]

Wang, F.; Zhang, Y. L.; Yang, W. J.; Zhang, J. J.; Zhang, H. S.; Xu, X. H. Topological half-metallic features in alkali metal doped CrCl3 monolayers. Phys. Rev. B 2023, 107, 174405.

[21]

Li, F. F.; Yang, B. S.; Zhu, Y.; Han, X. F.; Yan, Y. Ultrahigh tunneling magnetoresistance in van der Waals and lateral magnetic tunnel junctions formed by intrinsic ferromagnets Li0.5CrI3 and CrI3. Appl. Phys. Lett. 2020, 117, 022412.

[22]

Wang, Z. X.; Zheng, H. F.; Chen, A.; Ma, L.; Hong, S. J.; Rodriguez, E. E.; Woehl, T. J.; Shi, S. F.; Parker, T.; Ren, S. Q. Room-temperature CrI3 magnets through lithiation. ACS Nano 2024, 18, 23058–23066.

[23]

Xu, Q. F.; Xie, W. Q.; Lu, Z. W.; Zhao, Y. J. Theoretical study of enhanced ferromagnetism and tunable magnetic anisotropy of monolayer CrI3 by surface adsorption. Phys. Lett. A 2020, 384, 126754.

[24]

Wang, C.; Zhou, X. Y.; Zhou, L. W.; Tong, N. H.; Lu, Z. Y.; Ji, W. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64, 293–300.

[25]

Han, R. L.; Hou, H. Q.; Yan, Y. Large perpendicular magnetic anisotropy, high curie temperature, and half-metallicity in monolayer CrSI induced by substitution doping. J. Magn. Magn. Mater. 2023, 584, 171074.

[26]

Boix-Constant, C.; Mañas-Valero, S.; Ruiz, A. M.; Rybakov, A.; Konieczny, K. A.; Pillet, S.; Baldoví, J. J.; Coronado, E. Probing the spin dimensionality in single-layer CrSBr Van Der Waals heterostructures by magneto-transport measurements. Adv. Mater. 2022, 34, 2204940.

[27]

Liu, H. Y.; Yang, H.; Zheng, Y. J. Strong magnetic anisotropy and magnetoelastic coupling in chromium chalcohalide monolayers. Phys. Rev. B 2024, 109, 064425.

[28]

Xu, B.; Li, S. C.; Jiang, K.; Yin, J.; Liu, Z. G.; Cheng, Y. C.; Zhong, W. Y. Switching of the magnetic anisotropy via strain in two dimensional multiferroic materials: CrSX (X = Cl, Br, I). Appl. Phys. Lett. 2020, 116, 052403.

[29]

Guo, Y. L.; Zhang, Y. H.; Yuan, S. J.; Wang, B.; Wang, J. L. Chromium sulfide halide monolayers: Intrinsic ferromagnetic semiconductors with large spin polarization and high carrier mobility. Nanoscale 2018, 10, 18036–18042.

[30]

Han, R. L.; Hou, H. Q.; Xue, X. M.; Yan, Y. Enhancement of perpendicular magnetic anisotropy and curie temperature in V-doped two-dimensional CrSI Janus semiconductor monolayer. J. Phys. Chem. C 2023, 127, 2003–2011.

[31]

Han, R. L.; Xue, X. M.; Yan, Y. Hole-doping-induced perpendicular magnetic anisotropy and high curie temperature in a CrSX (X = Cl, Br, I) semiconductor monolayer. Nanomaterials 2023, 13, 3105.

[32]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[33]

Kresse, G.; Furthmüller, J. Efficiency of ab- initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

[34]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[35]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[36]

Mann, S.; Rani, P.; Kumar, R.; Jindal, V. K. DFT study of phonon dispersion in pure graphene. AIP Conf. Proc. 2015, 1675, 030035.

[37]

Xuan, X. W.; Yang, Z. Y.; Du, R.; Zhao, Y. M.; Yan, Y. L.; Liu, C.; Li, H.; Zhang, G. B. Ultralow thermal conductivity and anharmonic rattling in two-dimensional CrSX (X = Cl, Br, I) monolayers. Mater. Adv. 2023, 4, 4852–4859.

[38]

Wang, Y. W.; Luo, N. N.; Zeng, J.; Tang, L. M.; Chen, K. Q. Magnetic anisotropy and electric field induced magnetic phase transition in the van der Waals antiferromagnet CrSBr. Phys. Rev. B 2023, 108, 054401.

[39]

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

[40]

Evans, R. F. L.; Fan, W. J.; Chureemart, P.; Ostler, T. A.; Ellis, M. O. A.; Chantrell, R. W. Atomistic spin model simulations of magnetic nanomaterials. J. Phys.: Condens. Matter 2014, 26, 103202.

[41]

Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407.

[42]

Guo, X. Y.; Yang, B. S.; Zhang, X. L.; Zhu, Y.; Han, X. F.; Yan, Y. Giant tunneling magnetoresistance induced by bias voltage in spin-filter van der Waals magnetic tunnel junctions with an interlayer antiferromagnetic semiconductor barrier. Phys. Rev. B 2021, 104, 144423.

[43]

Chen, Q. Q.; Zheng, X. H.; Jiang, P.; Zhou, Y. H.; Zhang, L.; Zeng, Z. Electric field induced tunable half-metallicity in an A-type antiferromagnetic bilayer LaBr2. Phys. Rev. B 2022, 106, 245423.

[44]

Asselin, P.; Evans, R. F. L.; Barker, J.; Chantrell, R. W.; Yanes, R.; Chubykalo-Fesenko, O.; Hinzke, D.; Nowak, U. Constrained Monte Carlo method and calculation of the temperature dependence of magnetic anisotropy. Phys. Rev. B 2010, 82, 054415.

[45]

Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 1793–1803.

[46]

Zhao, P.; Li, J. W.; Jin, H.; Yu, L.; Huang, B. B.; Ying, D. Designing lateral spintronic devices with giant tunnel magnetoresistance and perfect spin injection efficiency based on transition metal dichalcogenides. Phys. Chem. Chem. Phys. 2018, 20, 10286–10291.

[47]

Song, Y. X.; Chai, C. C.; Fan, Q. Y.; Zhang, W.; Yang, Y. T. Lateral magnetic tunnel junctions with a heterointerface-induced half-metallic electrode. J. Phys. Chem. Solids 2022, 167, 110754.

[48]

Tan, J. N.; Yang, G. W.; Ouyang, G. Large tunneling magnetoresistance and its high bias stability in Weyl half-semimetal based lateral magnetic tunnel junctions. New J. Phys. 2024, 26, 033047.

[49]

Wu, Q. Y.; Ang, L. K. Giant tunneling magnetoresistance in atomically thin VSi2N4/MoSi2N4/VSi2N4 magnetic tunnel junction. Appl. Phys. Lett. 2022, 120, 022401.

Nano Research
Article number: 94907188
Cite this article:
Li Q-Q, Duan Z-F, Liu W-W, et al. Two-dimensional lateral magnetic tunnel junction with ultrahigh tunneling magnetoresistance. Nano Research, 2025, 18(2): 94907188. https://doi.org/10.26599/NR.2025.94907188
Topics:

536

Views

103

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 November 2024
Revised: 08 December 2024
Accepted: 12 December 2024
Published: 14 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return