Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lithium-ion batteries that integrate electrochemical performance and safety considerations offer advantages to curb the reliance on fossil fuels while minimizing the potential environmental risks. Transition metal disulfides and metal oxides with high specific capacity are promising candidates as anodes for lithium storage. However, neither the layered structure of MoS2 nor the powder form of In2O3 is ideal for battery prolonged applications. Herein, we demonstrated a low-toxicity anode designed with hollow fibers to regulate the MoS2 contact surface, significantly reducing biotoxicity and enhancing Li+ diffusion. Density functional theory (DFT) calculations revealed that the interactions among MoS2, In2O3, and the hollow structure lowered the Li-ion migration energy barrier hence fastening the diffusion. Moreover, the MoS2-containing fiber showed significantly decreased toxicity in zebrafish embryos compared to MoS2 alone, demonstrating a proof-of-principle of integrating functional nanomaterials into flexible fiber structures to improve both electrochemical performance and safety.
Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2300799.
Liu, Y. L.; Zhuang, Z. C.; Liu, Y. X.; Liu, N. Y.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Yu, R. H.; Wang, D. S.; Li, H. T. Shear-strained Pd single-atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2024, 63, e202411396.
Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.
Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.
Kong, X. L.; Zhao, X. H.; Li, C.; Jia, Z. M.; Yang, C. K.; Wu, Z. Y.; Zhao, X. D.; Zhao, Y.; He, F.; Ren, Y. M. et al. Terminal group-oriented self-assembly to controllably synthesize a layer-by-layer SnSe2 and MXene heterostructure for ultrastable lithium storage. Small 2023, 19, 2206563.
Yu, W. J.; Cui, B. T.; Han, J. M.; Zhu, S. S.; Xu, X. H.; Tan, J. X.; Xu, Q. J.; Min, Y. L.; Peng, Y. T.; Liu, H. M. et al. In situ encapsulation of SnS2/MoS2 heterojunctions by amphiphilic graphene for high-energy and ultrastable lithium-ion anodes. Adv. Sci. 2024, 11, 2405135.
Yu, H. X.; Pan, J. N.; Zhang, Y. X.; Wang, L. L.; Ji, H. C.; Xu, K. Y.; Zhi, T.; Zhuang, Z. C. Designing multi-heterogeneous interfaces of Ni-MoS2@NiS2@Ni3S2 hybrid for hydrogen evolution. Nano Res. 2024, 17, 4782–4789.
Yu, H. X.; Pan, J. N.; Chen, K.; Chao, W.; Zhuang, Z. C.; Feng, S. Z.; Chen, J. M.; Xie, L, B.; Wang, L. L.; Zhao, Q. MoS x nanowire networks derived from [Mo3S13]2− clusters for efficient electrocatalytic hydrogen evolution. Nano Res. 2024, 17, 6910–6915.
Li, S. W.; Liu, Y. C.; Zhao, X. D.; Shen, Q. Y.; Zhao, W.; Tan, Q. W.; Zhang, N.; Li, P.; Jiao, L. F.; Qu, X. H. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2007480.
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.
Zhu, J.; Chen, L. B.; Xu, Z.; Lu, B. G. Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy 2015, 12, 339–346.
Xu, H. J.; Wang, L.; Zhong, J.; Wang, T.; Cao, J. H.; Wang, Y. Y.; Li, X. Q.; Fei, H. L.; Zhu, J.; Duan, X. D. Ultra-stable and high-rate lithium ion batteries based on metal-organic framework-derived In2O3 nanocrystals/hierarchically porous nitrogen-doped carbon anode. Energy Environ. Mater. 2020, 3, 177–185.
Chen, Z. L.; Wu, R. B.; Wang, H.; Zhang, K. H. L.; Song, Y.; Wu, F. L.; Fang, F.; Sun, D. L. Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage. Nano Res. 2018, 11, 966–978.
Liu, Y. C.; Wang, F. F.; Fan, L. Z. Self-standing Na-storage anode of Fe2O3 nanodots encapsulated in porous N-doped carbon nanofibers with ultra-high cyclic stability. Nano Res. 2018, 11, 4026–4037.
Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.
Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.
Choi, J. M.; Saroha, R.; Kim, J. S.; Jang, M. R.; Cho, J. S. Porous nanofibers comprising VN nanodots and densified N-doped CNTs as redox-active interlayers for Li–S batteries. J. Power Sources 2023, 559, 232632.
Li, Z.; Zhang, C. Y.; Bu, J. T.; Zhang, L.; Cheng, L. L.; Wu, M. H. Constructing a novel carbon skeleton to anchor Sn/SnO2 nanodots for flexible supercapacitor with excellent rate capability. Carbon 2022, 194, 197–206.
Wu, Y.; Wei, Z. X.; Xu, R.; Gong, Y.; Gu, L.; Ma, J. M.; Yu, Y. Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Res. 2019, 12, 2211–2217.
Li, Q. H.; Zhang, W.; Peng, J.; Yu, D. D.; Liang, Z. X.; Zhang, W.; Wu, J. W.; Wang, G. Y.; Li, H. X.; Huang, S. M. Nanodot-in-nanofiber structured carbon-confined Sb2Se3 crystallites for fast and durable sodium storage. Adv. Funct. Mater. 2022, 32, 2112776.
Lian, X. T.; Xu, N.; Ma, Y. C.; Hu, F.; Wei, H. X.; Chen, H. Y.; Wu, Y. Z.; Li, L. L.; Li, D. S.; Peng, S. J. In-situ formation of Co1− x S hollow polyhedrons anchored on multichannel carbon nanofibers as self-supporting anode for lithium/sodium-ion batteries. Chem. Eng. J. 2021, 421, 127755.
Zhang, C. L.; Jiang, Z. H.; Lu, B. R.; Liu, J. T.; Cao, F. H.; Li, H.; Yu, Z. L.; Yu, S. H. MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage. Nano Energy 2019, 61, 104–110.
Jiang, H.; Ren, D. Y.; Wang, H. F.; Hu, Y. J.; Guo, S. J.; Yuan, H. Y.; Hu, P. J.; Zhang, L.; Li, C. Z. 2D monolayer MoS2-carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage. Adv. Mater. 2015, 27, 3687–3695
Zhang, C. L.; Yu, S. H. Nanoparticles meet electrospinning: Recent advances and future prospects. Chem. Soc. Rev. 2014, 43, 4423–4448.
Cao, X. W.; Ma, C.; Luo, L.; Chen, L.; Cheng, H.; Orenstein, R. S.; Zhang, X. W. Nanofiber materials for lithium-ion batteries. Adv. Fiber Mater. 2023, 5, 1141–1197.
Zhang, Y.; Srot, V.; Moudrakovski, I.; Feng, Y. Z.; van Aken, P. A.; Maier, J.; Yu, Y. Boosting sodium storage in TiF3/carbon core/sheath nanofibers through an efficient mixed-conducting network. Adv. Energy Mater. 2019, 9, 1901470.
Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science. 2006, 311, 622–627.
Zou, W.; Wan, Z. P.; Zhao, C. X.; Zhang, G. Q.; Zhang, X. L.; Zhou, Q. X. Impact of algal extracellular polymeric substances on the environmental fate and risk of molybdenum disulfide in aqueous media. Water Res. 2021, 205, 117708.
Zou, W.; Ma, S.; Ma, H. W.; Zhang, G. Q.; Cao, Z. G.; Zhang, X. L. Componential and molecular-weight-dependent effects of natural organic matter on the colloidal behavior, transformation, and toxicity of MoS2 nanoflakes. J. Hazard. Mater. 2023, 459, 132186.
Wang, Z. Y.; von dem Bussche, A.; Qiu, Y.; Valentin, T. M.; Gion, K.; Kane, A. B.; Hurt, R. H. Chemical dissolution pathways of MoS2 nanosheets in biological and environmental media. Environ. Sci. Technol. 2016, 50, 7208–7217.
Hao, J. L.; Song, G. S.; Liu, T.; Yi, X.; Yang, K.; Cheng, L.; Liu, Z. In vivo long-term biodistribution, excretion, and toxicology of pegylated transition-metal dichalcogenides MS2 (m = Mo, W, Ti) nanosheets. Adv. Sci. 2017, 4, 1600160.
Shang, E. X.; Li, Y.; Niu, J. F.; Zhou, Y. J.; Wang, T. Y.; Crittenden, J. C. Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles. Water Res. 2017, 124, 595–604.
Lin, S. J.; Yu, T. Y.; Yu, Z. Y.; Hu, X. L.; Yin, D. Q. Nanomaterials safer-by-design: An environmental safety perspective. Adv. Mater. 2018, 30, 1705691.
Hussain, S. M.; Braydich-Stolle, L. K.; Schrand, A. M.; Murdock, R. C.; Yu, K. O.; Mattie, D. M.; Schlager, J. J.; Terrones, M. Toxicity evaluation for safe use of nanomaterials: Recent achievements and technical challenges. Adv. Mater. 2009, 21, 1549–1559.
Jing, L. Y.; Sun, J. W.; Sun, C. Y.; Wu, D.; Lian, G.; Cui, D. L.; Wang, Q. L.; Yu, H. H. MoS2-intercalated carbon hetero-layers bonded on graphene as electrode materials for enhanced sodium/potassium ion storage. Nano Res. 2023, 16, 473–480.
Zhang, Y. F.; Meng, N.; Babar, A. A.; Wang, X. F.; Yu, J. Y.; Ding, B. Multi-bioinspired and multistructural integrated patterned nanofibrous surface for spontaneous and efficient fog collection. Nano Lett. 2021, 21, 7806–7814.
Wu, C. H.; Ou, J. Z.; He, F. Y.; Ding, J. F.; Luo, W.; Wu, M. H.; Zhang, H. J. Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 2019, 65, 104061.
Wang, L. L.; Zhang, Y. X.; Gu, C.; Yu, H. X.; Zhuang, Y. L.; Zhuang, Z. C. Diverse atomic structure configurations of metal-doped transition metal dichalcogenides for enhancing hydrogen evolution. Nano Res. 2024, 17, 3586–3602.
Xia, J. K.; Xu, J. W.; Yu, B.; Liang, X.; Qiu, Z.; Li, H.; Feng, H. J.; Li, Y. F.; Cai, Y. J.; Wei, H. Y. et al. A metal-sulfur-carbon catalyst mimicking the two-component architecture of nitrogenase. Angew. Chem., Int. Ed. 2024, 63, e202412740.
Zhang, N. N.; Gao, X. Y.; Guan, H. R.; Sun, S. M.; Liu, J. M.; Shao, Z. T.; Gao, Q. Y.; Zhang, Y.; Sun, R. Y.; Yang, G. et al. Three-dimensional porous In2O3 arrays for self-powered transparent solar-blind photodetectors with high responsivity and excellent spectral selectivity. Nano Res. 2024, 17, 4471–4477.
Shan, T. T.; Xin, S.; You, Y.; Cong, H. P.; Yu, S. H.; Manthiram, A. Combining nitrogen-doped graphene sheets and MoS2: A unique film-foam-film structure for enhanced lithium storage. Angew. Chem., Int. Ed. 2016, 55, 12783–12788.
Yue, L.; Zhang, W. H.; Zhang, W. D.; Zhang, Q. F.; Guan, R. F.; Hou, G. H.; Xu, N. One-step solvothermal process of In2O3/C nanosheet composite with double phases as high-performance lithium-ion battery anode. Electrochim. Acta. 2015, 160, 123–130.
Liu, H. P.; Lei, W.; Tong, Z. M.; Guan, K. K.; Jia, Q. L.; Zhang, S. W.; Zhang, H. J. Enhanced diffusion kinetics of Li ions in double-shell hollow carbon fibers. ACS Appl. Mater. Interfaces 2021, 13, 24604–24614.
Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.
Sun, Y. F.; Wang, Y. X.; Chen, J. Y. C.; Fujisawa, K.; Holder, C. F.; Miller, J. T.; Crespi, V. H.; Terrones, M.; Schaak, R. E. Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nat. Chem. 2020, 12, 284–293.
Wu, X. Y.; Wu, H. Y.; Xie, B.; Wang, R.; Wang, J. M.; Wang, D. G.; Shi, Q. F.; Diao, G. W.; Chen, M. Atomic welded dual-wall hollow nanospheres for three-in-one hybrid storage mechanism of alkali metal ion batteries. ACS Nano 2021, 15, 14125–14136.
Zhao, X. W.; Liu, Z. C.; Xiao, W. Y.; Huang, H. Y.; Zhang, L. H.; Cheng, Y. H.; Zhang, J. Y. Low crystalline MoS2 nanotubes from MoS2 nanomasks for lithium ion battery applications. ACS Appl. Nano Mater. 2020, 3, 7580–7586.
Rao, Y.; Wang, J.; Liang, P. H.; Zheng, H. J.; Wu, M.; Chen, J. T.; Shi, F.; Yan, K.; Liu, J. S.; Bian, K. et al. Heterostructured WS2/MoS2@carbon hollow microspheres anchored on graphene for high-performance Li/Na storage. Chem. Eng. J. 2022, 443, 136080.
Zeng, T. B.; Feng, D.; Liu, Q.; Zhou, R. Y. Confining nano-GeP in nitrogenous hollow carbon fibers toward flexible and high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 32978–32988.
Yan, L.; Zhao, F.; Wang, J.; Zu, Y.; Gu, Z. J.; Zhao, Y. L. A safe-by-design strategy towards safer nanomaterials in nanomedicines. Adv. Mater. 2019, 31, 1805391.
568
Views
73
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).