Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Porous materials can serve as optimal supporters for the fabrication of confined plasmon nano-photocatalysts with high dispersity. The low-loading amounts of the confined nanoparticles (NPs) due to their easy-to-migrate tendency out of the pores, however, cause a bottleneck for the photocatalytic performance. We herein reported the in-situ growth of Ag NPs within thio-functionalized UiO-66 metal-organic frameworks (MOFs). Owing to the anchoring effects of the thiol groups, Ag nanoparticles were stabilized in the channels at ultrahigh loading amounts (up to 51.2%) for significantly enhanced plasmonic resonance. Through optimizing the loading amounts of confined Ag and the remaining pore volumes for mass diffusion, we achieved an exceptional catalytic activity for the photocatalytic reduction of CO2 with Ag@MOFs. The photo-induced electron transfer rate is as high as 142.4 µmol·g–1·h–1, which is ~ 17.4 times higher than bare UiO-66-(SH)2. Notably, the enhanced charge transfer kinetics, facilitated by the plasmon-induced hot-electron injections, enables the multiple-electron reduction of CO2 to hydrocarbons. This work presents a straightforward strategy for constructing confined plasmon NPs with ultrahigh loading amounts, and demonstrates their remarkable performance in photocatalytic CO2 reduction.
Fang, S. Y.; Rahaman, M.; Bharti, J.; Reisner, E.; Robert, M.; Ozin, G. A.; Hu, Y. H. Photocatalytic CO2 reduction. Nat. Rev. Methods Primers 2023, 3, 61.
Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S. I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937.
Handoko, A. D.; Li, K.; Tang, J. W. Recent progress in artificial photosynthesis: CO2 photoreduction to valuable chemicals in a heterogeneous system. Curr. Opin. Chem. Eng. 2013, 2, 200–206.
Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, eaad1920.
Chen, X.; Guo, R. T.; Hong, L. F.; Yuan, Y.; Pan, W. G. Research progress on CO2 photocatalytic reduction with full solar spectral responses. Energy Fuels 2021, 35, 19920–19942.
Li, T.; Huang, H. W.; Wang, S. B.; Mi, Y.; Zhang, Y. H. Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction. Nano Res. 2023, 16, 8542–8569.
Xie, Z. H.; Hwang, S.; Chen, J. G. Reduction-induced metal/oxide interfacial sites for selective CO2 hydrogenation. SmartMat 2023, 4, e1201.
Serpone, N.; Emeline, A. V. Semiconductor photocatalysis-past, present, and future outlook. J. Phys. Chem. Lett. 2012, 3, 673–677.
Lan, D. P.; Sheng, W. T.; Fu, Q. Q.; Ge, J. P. Enhancement of CO2 photoreduction efficiency by supporting blue TiO2 with photonic crystal substrate. Nano Res. 2023, 16, 9310–9317.
Jiang, L. B.; Yuan, X. Z.; Pan, Y.; Liang, J.; Zeng, G. M.; Wu, Z. B.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B: Environ. 2017, 217, 388–406.
Goodarzi, N.; Ashrafi-Peyman, Z.; Khani, E.; Moshfegh, A. Z. Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts 2023, 13, 1102.
Jiao, X. C.; Zheng, K.; Hu, Z. X.; Sun, Y. F.; Xie, Y. Broad-spectral-response photocatalysts for CO2 reduction. ACS Cent. Sci. 2020, 6, 653–660.
Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: From recent advances to new trends. Small Struct. 2021, 2, 2000061.
Jiang, X. Y.; Huang, J. D.; Bi, Z. H.; Ni, W. J.; Gurzadyan, G.; Zhu, Y. A.; Zhang, Z. Y. Plasmonic active “hot spots”-confined photocatalytic CO2 reduction with high selectivity for CH4 production. Adv. Mater. 2022, 34, 2109330.
Jang, Y. H.; Jang, Y. J.; Kim, S.; Quan, L. N.; Chung, K.; Kim, D. H. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev. 2016, 116, 14982–15034.
Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927–2954.
Kim, S. M.; Lee, S. W.; Moon, S. Y.; Park, J. Y. The effect of hot electrons and surface plasmons on heterogeneous catalysis. J. Phys.: Condens. Matter 2016, 28, 254002.
Tahir, M.; Tahir, B.; Amin, N. A. S. Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl. Catal. B: Environ. 2017, 204, 548–560.
Wang, M. Y.; Ye, M. D.; Iocozzia, J.; Lin, C. J.; Lin, Z. Q. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 2016, 3, 1600024.
Wu, N. Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679–2696.
Gao, Z. Q.; Gong, Y.; Zhu, Y. T.; Li, J. J.; Li, L.; Shi, Y. X.; Hou, M.; Gao, X. J.; Zhang, Z. C.; Hu, W. P. Large π-conjugated indium-based metal-organic frameworks for high-performance electrochemical conversion of CO2. Nano Res. 2023, 16, 8743–8750.
Kollmannsberger, K. L.; Kronthaler, L.; Jinschek, J. R.; Fischer, R. A. Defined metal atom aggregates precisely incorporated into metal-organic frameworks. Chem. Soc. Rev. 2022, 51, 9933–9959.
Yee, K. K.; Reimer, N.; Liu, J.; Cheng, S. Y.; Yiu, S. M.; Weber, J.; Stock, N.; Xu, Z. T. Effective mercury sorption by thiol-laced metal-organic frameworks: In strong acid and the vapor phase. J. Am. Chem. Soc. 2013, 135, 7795–7798.
Chowdhury, S.; Sharma, P.; Kundu, K.; Das, P. P.; Rathi, P.; Siril, P. F. Systematic thiol decoration in a redox-active UiO-66-(SH)2 metal-organic framework: A case study under oxidative and reductive conditions. Inorg. Chem. 2023, 62, 3875–3885.
Wu, M. C.; Ouyang, C.; Ye, Z. R.; Li, S. B.; Hong, Z. L.; Zhi, M. J. Ag-CeO2 composite aerogels as photocatalysts for CO2 reduction. ACS Appl. Energy Mater. 2022, 5, 7335–7345.
Moon, H. R.; Kim, J. H.; Suh, M. P. Redox-active porous metal-organic framework producing silver nanoparticles from AgI ions at room temperature. Angew. Chem., Int. Ed. 2005, 44, 1261–1265.
Jiang, W. B.; Low, B. Q. L.; Long, R.; Low, J.; Loh, H.; Tang, K. Y.; Chai, C. H. T.; Zhu, H. J.; Zhu, H.; Li, Z. B. et al. Active site engineering on plasmonic nanostructures for efficient photocatalysis. ACS Nano 2023, 17, 4193–4229.
Chen, L.; Li, H. Y.; Li, H. M.; Li, H. M.; Qi, W. S.; Zhang, Q.; Zhu, J.; Zhao, P.; Yang, S. D. Accelerating photogenerated charge kinetics via the g-C3N4 Schottky junction for enhanced visible-light-driven CO2 reduction. Appl. Catal. B: Environ. 2022, 318, 121863.
746
Views
244
Downloads
1
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).