Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Low-oxygen (O2) environments are essential in various research and application fields, yet traditional methods like nitrogen flushing or chemical O2 absorbers face challenges in high equipment cost and low controllability. This study introduces a novel electrochemical oxygen removal (EOR) controller, offering a lightweight, low-cost, and precise low-O2 control solution. The self-powered EOR controller uses a sacrificial anode to drive the cathodic oxygen reduction reaction (ORR), efficiently consuming environmental O2 to reduce its level, thus eliminating the requirements of external gas or power sources. By integrating a single-atom ORR catalyst and flexible design, the device achieves a substantial reduction in weight and cost. The incorporation of electronic components for the EOR controller, including a switch for reaching targeted O2 concentration and a fixed resistor for O2 removal rate regulation, enables multi-dimensional O2 removal control. The system also realizes the O2 concentration estimation in real-time with ±1% accuracy (within the 21%–1% range) by calculating electron transfers. The EOR controller’s effectiveness is validated in plant hypoxia stress experiments, demonstrating precise O2 level adjustments and its potential across various applications requiring controlled hypoxic conditions.
Gibbs, D. J.; Lee, S. C.; Isa, N. M.; Gramuglia, S.; Fukao, T.; Bassel, G. W.; Correia, C. S.; Corbineau, F.; Theodoulou, F. L.; Bailey-Serres, J. et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 2011, 479, 415–418.
Singleton, D. C.; Macann, A.; Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 2021, 18, 751–772.
Lu, Z.; Imlay, J. A. When anaerobes encounter oxygen: Mechanisms of oxygen toxicity, tolerance and defence. Nat. Rev. Microbiol. 2021, 19, 774–785.
Priyadarshi, R.; Jayakumar, A.; de Souza, C. K.; Rhim, J. W.; Kim, J. T. Advances in strawberry postharvest preservation and packaging: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13417.
Kumar, B.; Adebayo, A. K.; Prasad, M.; Capitano, M. L.; Wang, R. Z.; Bhat-Nakshatri, P.; Anjanappa, M.; Simpson, E.; Chen, D. J.; Liu, Y. L. et al. Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity. Sci. Adv. 2022, 8, eabh3375.
Wang, S.; Yao, S. Q.; Pei, N.; Bai, L. G.; Hao, Z. Y.; Li, D. C.; He, J. K.; Oliveira, J. M.; Xue, X. Y.; Wang, L. et al. Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model. Bio-Des. Manuf. 2024, 7, 307–319.
Zhou, Y.; Zhou, D. M.; Yu, W. W.; Shi, L. L.; Zhang, Y.; Lai, Y. X.; Huang, L. P.; Qi, H.; Chen, Q. F.; Yao, N. et al. Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. Plant Cell 2022, 34, 889–909.
Koo, D.; Lee, H. G.; Bae, S. H.; Lee, K.; Seo, P. J. Callus proliferation-induced hypoxic microenvironment decreases shoot regeneration competence in Arabidopsis. Mol. Plant 2024, 17, 395–408.
Nagai, K.; Mori, Y.; Ishikawa, S.; Furuta, T.; Gamuyao, R.; Niimi, Y.; Hobo, T.; Fukuda, M.; Kojima, M.; Takebayashi, Y. et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 2020, 584, 109–114.
Quaglieri, C.; Jourdes, M.; Waffo-Teguo, P.; Teissedre, P. L. Updated knowledge about pyranoanthocyanins: Impact of oxygen on their contents, and contribution in the winemaking process to overall wine color. Trends Food Sci Technol 2017, 67, 139–149.
Sołowski, G.; Konkol, I.; Cenian, A. Methane and hydrogen production from cotton waste by dark fermentation under anaerobic and micro-aerobic conditions. Biomass Bioenergy 2020, 138, 105576.
Mesquita, T. J. B.; Sargo, C. R.; Fuzer Neto, J. R.; Paredes, S. A. H.; de campos Giordano, R.; Horta, A. C. L.; Zangirolami, T. C. Metabolic fluxes-oriented control of bioreactors: A novel approach to tune micro-aeration and substrate feeding in fermentations. Microb. Cell Fact. 2019, 18, 150.
Enomoto, T.; Tokizawa, M.; Ito, H.; Iuchi, S.; Kobayashi, M.; Yamamoto, Y. Y.; Kobayashi, Y.; Koyama, H. STOP1 regulates the expression of HsfA2 and GDHs that are critical for low-oxygen tolerance in Arabidopsis. J. Exp. Bot. 2019, 70, 3297–3311.
Dey, A.; Neogi, S. Oxygen scavengers for food packaging applications: A review. Trends Food Sci. Technol. 2019, 90, 26–34.
Mathew, I. E.; Rhein, H. S.; Green, A. J.; Hirschi, K. D. Generating reproducing anoxia conditions for plant phenotyping. Bio-protocol 2023, 13, e4603.
Shao, W. J.; Yan, R.; Zhou, M.; Ma, L.; Roth, C.; Ma, T.; Cao, S. J.; Cheng, C.; Yin, B.; Li, S. Carbon-based electrodes for advanced zinc-air batteries: Oxygen-catalytic site regulation and nanostructure design. Electrochem. Energy Rev. 2023, 6, 11.
Zhao, Y. G.; Adiyeri Saseendran, D. P.; Huang, C.; Triana, C. A.; Marks, W. R.; Chen, H.; Zhao, H.; Patzke, G. R. Oxygen evolution/reduction reaction catalysts: From in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 2023, 123, 6257–6358.
Jiao, C. L.; Xu, Z. A.; Shao, J. Z.; Xia, Y.; Tseng, J.; Ren, G. Y.; Zhang, N. J.; Liu, P. F.; Liu, C. X.; Li, G. S. et al. High-density atomic Fe–N4/C in tubular, biomass-derived, nitrogen-rich porous carbon as air-electrodes for flexible Zn-air batteries. Adv. Funct. Mater. 2023, 33, 2213897.
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.
Zhao, X. Y.; Zhao, J.; Li, D. M.; Zhou, F. Y.; Li, P.; Tan, Y.; Zhou, H.; Zhang, Y.; Lin, S.; Wu, Y. E. Electrolyte-free electrochemical oxygen generator for providing sterile and medical-grade oxygen in household applications. Device 2024, 2, 100360.
Zhang, Y.; Xie, K.; Zhou, F. Y.; Wang, F. T.; Xu, Q.; Hu, J.; Ding, H. H.; Li, P.; Tan, Y.; Li, D. M. et al. Electrochemical oxygen generator with 99.9% oxygen purity and high energy efficiency. Adv. Energy Mater. 2022, 12, 2201027.
Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Gao, Y.; Wang, D. S. Atomically dispersed catalysts: Precise synthesis, structural regulation, and structure–activity relationship. CCS Chem. 2024, 6, 833–855.
Chen, K.; Gao, J. H.; Sun, S. J.; Zhang, Z. J.; Yu, B.; Li, J.; Xie, C. G.; Li, G. J.; Wang, P. C.; Song, C. P. et al. BONZAI proteins control global osmotic stress responses in plants. Curr. Biol. 2020, 30, 4815–4825.e4.
Wang, Q. C.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.
Zhou, Y.; Tan, W. J.; Xie, L. J.; Qi, H.; Yang, Y. C.; Huang, L. P.; Lai, Y. X.; Tan, Y. F.; Zhou, D. M.; Yu, L. J. et al. Polyunsaturated linolenoyl-CoA modulates ERF-VII-mediated hypoxia signaling in Arabidopsis. J. Integr. Plant Biol. 2020, 62, 330–348.
548
Views
156
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).