AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Shape effect of prodrug nanoassemblies on treatment efficacy of cancer therapy

Fengxiang Liu1,§Rongzheng Liu1,§Xiaoyuan Fan2,§Xia Wang2,§Kaiyuan Wang1,§Hainan Zhao3,§Hao Ye4Shunzhe Zheng1Xiao Kuang1Yinxian Yang1Haotian Zhang5Qiming Kan5Zhonggui He1,6Jian Chen7 ( )Jin Sun1,6 ( )
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
Nephrology department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich 8092, Switzerland
School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China

§ Fengxiang Liu, Rongzheng Liu, Xiaoyuan Fan, Xia Wang, Kaiyuan Wang, and Hainan Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

The work reported novel prodrug nanoparticles linked by disulfide bonds and their morphological discrepancy, which results in different therapeutic outcomes.

Abstract

The tumor microenvironment-sensitive prodrug-based nanoparticles (NPs) have emerged as a promising drug delivery system (DDS). The shape of these particles plays a crucial role in their in vivo behavior. However, non-spherical organic NPs are rarely reported due to the inherent flexibility and variability of organic molecules. Herein, we fabricate reduction-sensitive prodrug NPs and explore the impact of their morphology properties on their in vivo fate. Prodrugs are self-assembled into spherical NPs with distearoyl phosphoethanolamine-PEG2000 (DSPE-PEG2K), or into rod-shaped NPs with D-α-tocopherol polyethylene glycol 2000 succinate (TPGS2K) due to the stronger binding energy. In comparison with spherical NPs, the endocytosis of rod-shaped NPs predominantly relies on caveolae-mediated pathways rather than clathrin-mediated ones, potentially avoiding degradation by lysosomes. Additionally, the rod-shaped NPs exhibit prolonged circulation time, increased tumor accumulation, and enhanced antitumor ability. Our current findings reveal the significant effect of particle shape on the behavior of prodrug NPs and introduce a novel paradigm for high-efficacy cancer therapy of prodrug NPs.

Electronic Supplementary Material

Download File(s)
7177_ESM.pdf (1.4 MB)

References

[1]

Chabner, B. A.; Roberts, T. G. Jr. Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65–72.

[2]

Zhang, X. B.; Xiong, J. C.; Wang, K. Y.; Yu, H.; Sun, B. J.; Ye, H.; Zhao, Z. Q.; Wang, N.; Wang, Y. Q.; Zhang, S. W. et al. Erythrocyte membrane-camouflaged carrier-free nanoassembly of FRET photosensitizer pairs with high therapeutic efficiency and high security for programmed cancer synergistic phototherapy. Bioact. Mater. 2021, 6, 2291–2302.

[3]

Huang, M.; Lu, J. J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021, 11, 5–13.

[4]

Tang, Z.; Yin, L. N.; Zhang, Y. W.; Yu, W. Y.; Wang, Q.; Zhan, Z. L. Preparation and study of two kinds of ophthalmic nano-preparations of everolimus. Drug Deliv. 2019, 26, 1235–1242.

[5]

Wang, K. Y.; Ye, H.; Zhang, X. B.; Wang, X.; Yang, B.; Luo, C.; Zhao, Z. Q.; Zhao, J.; Lu, Q.; Zhang, H. T. et al. An exosome-like programmable-bioactivating paclitaxel prodrug nanoplatform for enhanced breast cancer metastasis inhibition. Biomaterials 2020, 257, 120224.

[6]

Ye, H.; Wang, K. Y.; Lu, Q.; Zhao, J.; Wang, M. L.; Kan, Q. M.; Zhang, H. T.; Wang, Y. J.; He, Z. G.; Sun, J. Nanosponges of circulating tumor-derived exosomes for breast cancer metastasis inhibition. Biomaterials 2020, 242, 119932.

[7]

Ye, H.; Wang, K. Y.; Wang, M. L.; Liu, R. Z.; Song, H.; Li, N.; Lu, Q.; Zhang, W. J.; Du, Y. Q.; Yang, W. Q. et al. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 2019, 206, 1–12.

[8]

Li, G. T.; Sun, B. J.; Li, Y. Q.; Luo, C.; He, Z. G.; Sun, J. Small-molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery. Small 2021, 17, 2101460.

[9]

Li, S. M.; Shan, X. Z.; Wang, Y. Q.; Chen, Q.; Sun, J.; He, Z. G.; Sun, B. J.; Luo, C. Dimeric prodrug-based nanomedicines for cancer therapy. J. Controlled Release 2020, 326, 510–522.

[10]

Sun, B. J.; Luo, C.; Zhang, X. B.; Guo, M. R.; Sun, M. C.; Yu, H.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Zuo, S. Y. et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10, 3211.

[11]

Wang, Y. L.; Wang, J. M.; Yang, L. Y.; Wei, W.; Sun, B. J.; Na, K. X.; Song, Y. X.; Zhang, H. T.; He, Z. G.; Sun, J. et al. Redox dual-responsive paclitaxel-doxorubicin heterodimeric prodrug self-delivery nanoaggregates for more effective breast cancer synergistic combination chemotherapy. Nanomed.: Nanotechnol. Biol. Med. 2019, 21, 102066.

[12]

Luo, C.; Sun, B. J.; Wang, C.; Zhang, X. B.; Chen, Y.; Chen, Q.; Yu, H.; Zhao, H. Q.; Sun, M. C.; Li, Z. B. et al. Self-facilitated ROS-responsive nanoassembly of heterotypic dimer for synergistic chemo-photodynamic therapy. J. Controlled Release 2019, 302, 79–89.

[13]

Zuo, S. Y.; Sun, B. J.; Yang, Y. X.; Zhou, S.; Zhang, Y.; Guo, M. R.; Sun, M. C.; Luo, C.; He, Z. G.; Sun, J. Probing the superiority of diselenium bond on docetaxel dimeric prodrug nanoassemblies: Small roles taking big responsibilities. Small 2020, 16, 2005039.

[14]

Jiang, M. J.; Mu, J.; Jacobson, O.; Wang, Z. T.; He, L. C.; Zhang, F. W.; Yang, W. J.; Lin, Q. Y.; Zhou, Z. J.; Ma, Y. et al. Reactive oxygen species activatable heterodimeric prodrug as tumor-selective nanotheranostics. ACS Nano 2020, 14, 16875–16886.

[15]

Chen, X.; Lei, S.; Lin, J.; Huang, P. Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms. Expert Opin. Drug Deliv. 2022, 19, 1487–1504.

[16]

Zhang, X. B.; Li, N.; Zhang, S. W.; Sun, B. J.; Chen, Q.; He, Z. G.; Luo, C.; Sun, J. Emerging carrier-free nanosystems based on molecular self-assembly of pure drugs for cancer therapy. Med. Res. Rev. 2020, 40, 1754–1775.

[17]

Luo, C.; Sun, J.; Sun, B. J.; Liu, D.; Miao, L.; Goodwin, T. J.; Huang, L.; He, Z. G. Facile fabrication of tumor redox-sensitive nanoassemblies of small-molecule oleate prodrug as potent chemotherapeutic nanomedicine. Small 2016, 12, 6353–6362.

[18]

Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

[19]

Chauhan, V. P.; Popović, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M. G.; Jain, R. K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem., Int. Ed. 2011, 50, 11417–11420.

[20]

Fan, M. M.; Zhang, W. Z.; Cheng, C.; Liu, Y.; Li, B. J.; Sun, X.; Zhang, S. Evaluation of rod-shaped nanoparticles as carriers for gene delivery. Part. Part. Syst. Charact. 2014, 31, 994–1000.

[21]

Agarwal, R.; Singh, V.; Jurney, P.; Shi, L.; Sreenivasan, S. V.; Roy, K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl. Acad. Sci. USA 2013, 110, 17247–17252.

[22]

Barua, S.; Yoo, J. W.; Kolhar, P.; Wakankar, A.; Gokarn, Y. R.; Mitragotri, S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl. Acad. Sci. USA 2013, 110, 3270–3275.

[23]

Li, D.; Li, X.; Bai, J.; Liu, Y.; de Vries, R.; Li, Y. Rod-shaped polypeptide nanoparticles for siRNA delivery. Int. J. Biol. Macromol. 2021, 166, 401–408.

[24]

Zhao, Z. M.; Ukidve, A.; Krishnan, V.; Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Delivery Rev. 2019, 143, 3–21.

[25]

Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S. Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Controlled Release 2010, 141, 320–327.

[26]

Zhang, X. B.; Sun, B. J.; Zuo, S. Y.; Chen, Q.; Gao, Y. L.; Zhao, H. Q.; Sun, M. C.; Chen, P. Y.; Yu, H.; Zhang, W. J. et al. Self-assembly of a pure photosensitizer as a versatile theragnostic nanoplatform for imaging-guided antitumor photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 30155–30162.

[27]

Li, L. X.; Liu, T.; Zuo, S. Y.; Li, Y. Q.; Zhao, E. W.; Lu, Q.; Wang, D. P.; Sun, Y. X.; He, Z. G.; Sun, B. J. et al. Satellite-type sulfur atom distribution in trithiocarbonate bond-bridged dimeric prodrug nanoassemblies: Achieving both stability and activatability. Adv. Mater. 2024, 36, 2310633.

[28]

Zhao, D. Y.; Tao, W. H.; Li, S. H.; Chen, Y.; Sun, Y. H.; He, Z. G.; Sun, B. J.; Sun, J. Apoptotic body-mediated intercellular delivery for enhanced drug penetration and whole tumor destruction. Sci. Adv. 2021, 7, eabg0880.

[29]

Yang, Y. X.; Sun, B. J.; Zuo, S. Y.; Li, X. M.; Zhou, S.; Li, L. X.; Luo, C.; Liu, H. Z.; Cheng, M. S.; Wang, Y. J. et al. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725.

[30]

Mao, Y. L.; Feng, S.; Li, S.; Zhao, Q. F.; Di, D. H.; Liu, Y. F.; Wang, S. L. Chylomicron-pretended nano-bio self-assembling vehicle to promote lymphatic transport and GALTs target of oral drugs. Biomaterials 2019, 188, 173–186.

[31]

Tan, J.; Lu, Y. C.; Xu, J. H.; Luo, G. S. Modeling investigation of mass transfer of gas-liquid concurrent flow processes. Sep. Purif. Technol. 2013, 109, 77–86.

[32]

Agarwal, R.; Jurney, P.; Raythatha, M.; Singh, V.; Sreenivasan, S. V.; Shi, L.; Roy, K. Effect of shape, size, and aspect ratio on nanoparticle penetration and distribution inside solid tissues using 3D spheroid models. Adv. Healthcare Mater. 2015, 4, 2269–2280.

Nano Research
Article number: 94907177
Cite this article:
Liu F, Liu R, Fan X, et al. Shape effect of prodrug nanoassemblies on treatment efficacy of cancer therapy. Nano Research, 2025, 18(2): 94907177. https://doi.org/10.26599/NR.2025.94907177
Topics:

417

Views

89

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 September 2024
Revised: 26 November 2024
Accepted: 05 December 2024
Published: 15 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return