Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with prolonged latency during the prodromal stage. However, current clinical approaches to pharmacological interventions for AD remain challenge. An effective treatment strategy is to eliminate protein aggregates and prevent their regeneration. In this study, interleukin (IL)-3-loaded porous manganese (Mn2+)-doped Prussian blue (PB) nanoparticles (NPs) were coated with dopaminergic MES23.5 neuronal cell membranes (PBMn-IL3@CM) and then used to combat AD progression. The PBMn-IL3@CM NPs possessed a high targeting efficiency, being able to traverse the blood-brain barrier and specifically affect the brain to reduce oxidative stress. The Mn2+-doped PB NPs effectively scavenged reactive oxygen radicals produced by microglia, inducing the pro-inflammatory M1 microglia. In addition, the released IL-3 activated microglia, causing the polarization of the M1 phenotype to the anti-inflammatory M2 phenotype in vitro and in vivo. The transition reduced phosphorylated tau accumulation, mediated neurotoxicity, and eliminated tau aggregates, which reversed cognitive impairment in AD mice. The PBMn-IL3@CM NPs showed excellent biocompatibility without significant adverse effects; consequently, they represent a promising AD treatment.
Hung, C. W.; Chen, Y. C.; Hsieh, W. L.; Chiou, S. H.; Kao, C. L. Ageing and neurodegenerative diseases. Ageing Res. Rev. 2010, 9 suppl, S36–S46
Mistretta, M.; Farini, A.; Torrente, Y.; Villa, C. Multifaceted nanoparticles: Emerging mechanisms and therapies in neurodegenerative diseases. Brain 2023, 146, 2227–2240.
Ge, K. Z.; Li, Z.; Wang, A. L.; Bai, Z. T.; Zhang, X.; Zheng, X.; Liu, Z.; Gao, F. L. An NIR-driven upconversion/C3N4/CoP photocatalyst for efficient hydrogen production by inhibiting electron-hole pair recombination for Alzheimer’s disease therapy. ACS Nano 2023, 17, 2222–2234.
Yin, Y. M.; Chen, G. F.; Gong, L.; Ge, K. Z.; Pan, W. Z.; Li, N.; Machuki, J. O.; Yu, Y. Y.; Geng, D. Q.; Dong, H. F. et al. DNAzyme-powered three-dimensional DNA walker nanoprobe for detection amyloid β-peptide oligomer in living cells and in vivo. Anal. Chem. 2020, 92, 9247–9256.
Wu, Y. C.; Bogale, T. A.; Koistinaho, J.; Pizzi, M.; Rolova, T.; Bellucci, A. The contribution of β-amyloid, Tau and α-synuclein to blood-brain barrier damage in neurodegenerative disorders. Acta Neuropathol. 2024, 147, 39.
Zhu, C. L.; Yang, Y. H.; Li, X. W.; Chen, X. Y.; Lin, X. C.; Wu, X. P. Develop potential multi-target drugs by self-assembly of quercetin with amino acids and metal ion to achieve significant efficacy in anti-Alzheimer’s disease. Nano Res. 2022, 15, 5173–5182.
Ceyzériat, K.; Zilli, T.; Millet, P.; Frisoni, G. B.; Garibotto, V.; Tournier, B. B. Learning from the past: A review of clinical trials targeting amyloid, tau and neuroinflammation in Alzheimer’s disease. Curr. Alzheimer Res. 2020, 17, 112–125.
Golde, T. E.; DeKosky, S. T.; Galasko, D. Alzheimer's disease: The right drug, the right time. Science 2018, 362, 1250–1251.
Congdon, E. E.; Sigurdsson, E. M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018, 14, 399–415.
El Mammeri, N.; Dregni, A. J.; Duan, P.; Wang, H. K.; Hong, M. Microtubule-binding core of the tau protein. Sci. Adv. 2022, 8, eabo4459.
Christensen, C. S.; Wang, S. A.; Li, W. S.; Yu, D. Y.; Li, H. J. Structural variations of prions and prion-like proteins associated with neurodegeneration. Curr. Issues Mol. Biol. 2024, 46, 6423–6439.
Sun, X. R.; Ruan, H. T.; Liu, Q. D.; Cao, S. L.; Jing, Q.; Xu, Y. R.; Xiong, L. Z.; Cui, W. G.; Li, C. Targeted regulation of neuroinflammation via nanobiosignaler for repairing the central nerve system injuries. Nano Res. 2023, 16, 2938–2948.
Prater, K. E.; Green, K. J.; Mamde, S.; Sun, W.; Cochoit, A.; Smith, C. L.; Chiou, K. L.; Heath, L.; Rose, S. E.; Wiley, J. et al. Human microglia show unique transcriptional changes in Alzheimer’s disease. Nat. Aging 2023, 3, 894–907.
Salter, M. W.; Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 2017, 23, 1018–1027.
Hu, X. M.; Leak, R. K.; Shi, Y. J.; Suenaga, J.; Gao, Y. Q.; Zheng, P.; Chen, J. Microglial and macrophage polarization-new prospects for brain repair. Nat. Rev. Neurol. 2015, 11, 56–64.
Leng, F. D.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here. Nat. Rev. Neurol. 2021, 17, 157–172.
Liu, H. H.; Han, Y. B.; Wang, T. T.; Zhang, H.; Xu, Q.; Yuan, J. X.; Li, Z. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc. 2020, 142, 21730–21742.
Li, T. Z.; Hou, X. Y.; Qi, Y.; Duan, X. H.; Yan, P. C.; Zhu, H. R.; Xie, Z. J.; Zhang, H. Nanomaterials for neurodegenerative diseases: Molecular mechanisms guided design and applications. Nano Res. 2022, 15, 3299–3322.
Fu, P. P.; Xia, Q. S.; Sun, X.; Yu, H. T. Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J. Environ. Sci. Health Part C 2012, 30, 1–41.
Ren, C. X.; Li, D. D.; Zhou, Q. X.; Hu, X. G. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials 2020, 232, 119752.
Boyetey, M. J. B.; Choi, Y.; Lee, H. Y.; Choi, J. Nanotechnology-based delivery of therapeutics through the intranasal pathway and the blood-brain barrier for Alzheimer's disease treatment. Biomater. Sci. 2024, 12, 2007–2018.
Li, L. Q.; Zhang, W. Y.; Cao, H. Y.; Fang, L. M.; Wang, W. J.; Li, C. Z. L.; He, Q. B.; Jiao, J. W.; Zheng, R. X. Nanozymes in Alzheimer's disease diagnostics and therapy. Biomater. Sci. 2024, 12, 4519–4545.
Ma, X. X.; Hao, J. N.; Wu, J. R.; Li, Y. H.; Cai, X. J.; Zheng, Y. Y. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv. Mater. 2022, 34, 2106723.
Wang, Y. H.; Liang, Z. H.; Liang, Z. Y.; Lv, W. F.; Chen, M.; Zhao, Y. Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J. Control. Release 2022, 351, 752–778.
Feng, L. S.; Dou, C. R.; Xia, Y. G.; Li, B. H.; Zhao, M. Y.; El-Toni, A. M.; Atta, N. F.; Zheng, Y. Y.; Cai, X. J.; Wang, Y. et al. Enhancement of nanozyme permeation by endovascular interventional treatment to prevent vascular restenosis via macrophage polarization modulation. Adv. Funct. Mater. 2020, 30, 2006581.
Wu, Q. H.; Zhou, Y.; Yan, J.; Li, X. D.; Meng, F. H.; Wang, B.; Yin, L. C. Biomimetic nanocomplexes orchestrate post-stroke cerebral microenvironment via microglia-targeted siRNA delivery. Nano Today 2024, 58, 102444.
Zhou, Y.; Liang, Q. J.; Wu, X. J.; Duan, S. Z.; Ge, C. L.; Ye, H.; Lu, J. H.; Zhu, R. Y.; Chen, Y. B.; Meng, F. H. et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv. Mater. 2023, 35, 2210691.
Peng, J. R.; Dong, M. L.; Ran, B.; Li, W. T.; Hao, Y.; Yang, Q.; Tan, L. W.; Shi, K.; Qian, Z. Y. “One-for-all”-type, biodegradable Prussian blue/manganese dioxide hybrid nanocrystal for trimodal imaging-guided photothermal therapy and oxygen regulation of breast cancer. ACS Appl. Mater. Interfaces 2017, 9, 13875–13886.
Wang, C.; Zhang, M. L.; Bai, L. P.; Gai, P. P.; Li, F. Light-driven self-cascade peroxidase-like nanozymes without exogenous H2O2. Anal. Chem. 2023, 95, 7014–7020.
Jin, Y.; Peng, Q. C.; Xie, J. W.; Li, K.; Zang, S. Q. Photo-activated circularly polarized luminescence film based on aggregation-induced emission copper (I) cluster-assembled materials. Angew. Chem. 2023, 135, e202301000.
Chou, C. H.; Yang, C. R. Neuroprotective studies of evodiamine in an okadaic acid-induced neurotoxicity. Int. J. Mol. Sci. 2021, 22, 5347.
Zhao, J. H.; Yin, F. C.; Ji, L. M.; Wang, C.; Shi, C. J.; Liu, X. C.; Yang, H. L.; Wang, X. B.; Kong, L. Y. Development of a tau-targeted drug delivery system using a multifunctional nanoscale metal-organic framework for Alzheimer’s disease therapy. ACS Appl. Mater. Interfaces 2020, 12, 44447–44458.
Pan, Y. M.; Zhang, Y. L.; Liu, N.; Lu, W. Y.; Yang, J. X.; Li, Y.; Liu, Z. W.; Wei, Y. H.; Lou, Y.; Kong, J. Vitamin D attenuates Alzheimer-like pathology induced by Okadaic acid. ACS Chem. Neurosci. 2021, 12, 1343–1350.
Cai, X. J.; Gao, W.; Ma, M.; Wu, M. Y.; Zhang, L. L.; Zheng, Y. Y.; Chen, H. R.; Shi, J. L. A Prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity. Adv. Mater. 2015, 27, 6382–6389.
Dumont, M. F.; Hoffman, H. A.; Yoon, P. R. S.; Conklin, L. S.; Saha, S. R.; Paglione, J. P.; Sze, R. W.; Fernandes, R. Biofunctionalized gadolinium-containing prussian blue nanoparticles as multimodal molecular imaging agents. Bioconjugate Chem. 2014, 25, 129–137.
Cafun, J. D.; Champion, G.; Arrio, M. A.; dit Moulin, C. C.; Bleuzen, A. Photomagnetic CoFe Prussian blue analogues: Role of the cyanide ions as active electron transfer bridges modulated by cyanide-alkali metal ion interactions. J. Am. Chem. Soc. 2010, 132, 11552–11559.
Wojdeł, J. C.; Bromley, S. T. Band gap variation in Prussian blue via cation-induced structural distortion. J. Phys. Chem. B 2006, 110, 24294–24298.
Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem. 2010, 345, 91–104.
Pan, S. Y.; Sun, Z. W.; Zhao, B.; Miao, L. Q.; Zhou, Q. F.; Chen, T. F.; Zhu, X. Q. Therapeutic application of manganese-based nanosystems in cancer radiotherapy. Biomaterials 2023, 302, 122321.
Tian, R. Z.; Ma, H. Y.; Ye, W.; Li, Y. J.; Wang, S. P.; Zhang, Z. R.; Liu, S. D.; Zang, M. S.; Hou, J. X.; Xu, J. Y. et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv. Funct. Mater. 2022, 32, 2204025.
Liu, C. P.; Wu, T. H.; Liu, C. Y.; Chen, K. C.; Chen, Y. X.; Chen, G. S.; Lin, S. Y. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 2017, 13, 1700278.
Jiang, X. X.; Liu, K.; Li, Q.; Liu, M.; Yang, M. H.; Chen, X. B-Doped core-shell Fe@BC nanozymes: Active site identification and bacterial inhibition. Chem. Commun. 2021, 57, 1623–1626.
Kim, D.; Su, J.; Cotman, C. W. Sequence of neurodegeneration and accumulation of phosphorylated tau in cultured neurons after okadaic acid treatment. Brain Res. 1999, 839, 253–262.
Kamat, P. K.; Nath, C. Okadaic acid: A tool to study regulatory mechanisms for neurodegeneration and regeneration in Alzheimer's disease. Neural Regen. Res. 2015, 10, 365–367.
Shi, Y.; Bu, W. Z.; Chu, D. C.; Lin, W. Z.; Li, K.; Huang, X. P.; Wang, X. L.; Wu, Y.; Wu, S.; Li, D. D. et al. Rescuing nucleus pulposus cells from ROS toxic microenvironment via mitochondria-targeted carbon dot-supported Prussian blue to alleviate intervertebral disc degeneration. Adv. Healthc. Mater. 2024, 13, 2303206.
Bartsch, T.; Döhring, J.; Rohr, A.; Jansen, O.; Deuschl, G. CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proc. Natl. Acad. Sci. USA 2011, 108, 17562–17567.
Wolf, S. A.; Boddeke, H. W. G. M.; Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol. 2017, 79, 619–643.
485
Views
94
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).