AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (34.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Micro-macro regulating heterogeneous interface engineering in 3D N-doped carbon fiber/MXene/TiO2 nano-aerogel for boosting electromagnetic wave absorption

Ying Li1,2Chunlei Dong1Sijia Wang1Dongyi Lei1,2 ( )Binbin Yin3Yifei Cui1,2Yanru Wang1,2Ran Li1,2
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao 266033, China
Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China
Show Author Information

Graphical Abstract

Under micro-macro synergistic effects, a three-dimensional (3D) N-doped carbon fiber/MXene/TiO2 nano-aerogel is constructed, whose minimum reflection loss reaches up −72.56 dB and effective absorption bandwidth is 6.92 GHz at a matching thickness of 2.23 mm.

Abstract

MXene, as a rising star among two-dimensional (2D) electromagnetic wave materials, faces urgent challenges in addressing its self-stacking issue and regulating its conductivity. Herein, a micro-macro collaborative design strategy was proposed to regulate heterogeneous interface engineering in MXene-based absorbers. Biomass-based cotton was introduced as three-dimensional (3D) framework for constructing a porous structure, TiO2 was in-situ generated and nitrogen atom was doped on Ti3C2Tx MXene to regulate its dielectric properties, a 3D N-doped carbon fiber/MXene/TiO2 (CMT) nano-aerogel was successful constructed. The synergistic effects of diverse components and structural designs, porous frameworks and TiO2 lattice contraction can significantly adjust the density of the conductive network and create abundant heterogeneous interfaces, as well as the lattice defects induced by nitrogen atom doping can enhance polarization loss, ultimately leading to the excellent microwave absorption performance of 3D N-CMT nano-aerogels. The optimized N-CMT 30% aerogel exhibited a minimum reflection loss (RLmin) of −72.56 dB and an effective absorption bandwidth (EAB) of 6.92 GHz at 2.23 mm. Notably, when the thickness was adjusted from 1 to 5 mm, the EAB of the N-CMT 30% aerogel reached 13.94 GHz, achieving coverage of 98% of the C-band and the entire X and Ku bands. Furthermore, the attenuation capabilities of the N-CMT aerogel were further confirmed through RCS simulations, whose RCS reduction value reaches up to 19.969 dB·m2. These results demonstrate that 3D N-CMT nano-aerogel relying on interface engineering design exhibits significant potential in the field of electromagnetic protection, providing an important reference for future efficient absorbers.

Electronic Supplementary Material

Download File(s)
7169_ESM.pdf (2.7 MB)

References

[1]

Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2T x MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

[2]

Deng, B. W.; Xiang, Z.; Xiong, J.; Liu, Z. C.; Yu, L. Z.; Lu, W. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 2020, 12, 55.

[3]

Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z. S.; Liu, Y. F.; Yu, Z. Z. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018, 14, 1802479.

[4]
Wu, Y.; Tan, S. J.; Fang, G.; Zhang, Y. Q.; Ji, G. B. Manipulating CNT films with atomic precision for absorption effectiveness-enhanced electromagnetic interference shielding and adaptive infrared camouflage. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202402193.
[5]

Wang, Y. Q.; Zhao, H. B.; Cheng, J. B.; Liu, B. W.; Fu, Q.; Wang, Y. Z. Hierarchical Ti3C2T x @ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 2022, 14, 76.

[6]

Lyu, J.; Liu, Z. W.; Wu, X. H.; Li, G. Y.; Fang, D.; Zhang, X. T. Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 2019, 13, 2236–2245.

[7]

Liu, C. Y.; Xu, L.; Xiang, X. Y.; Zhang, Y. J.; Zhou, L.; Ouyang, B.; Wu, F.; Kim, D. H.; Ji, G. B. Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 2024, 16, 176.

[8]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[9]

Quan, B.; Liang, X. H.; Ji, G. B.; Cheng, Y.; Liu, W.; Ma, J. N.; Zhang, Y. N.; Li, D. R.; Xu, G. Y. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd. 2017, 728, 1065–1075.

[10]

Liang, H. S.; Chen, G.; Liu, D.; Li, Z. J.; Hui, S. C.; Yun, J. J.; Zhang, L. M.; Wu, H. J. Exploring the Ni 3 d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 2023, 33, 2370037.

[11]

You, W. B.; Che, R. C. Excellent NiO–Ni nanoplate microwave absorber via pinning effect of antiferromagnetic-ferromagnetic interface. ACS Appl. Mater. Interfaces 2018, 10, 15104–15111.

[12]

Pan, F.; Cai, L.; Shi, Y.; Dong, Y.; Zhu, X.; Cheng, J.; Jiang, H.; Wang, X.; Jiang, Y.; Lu, W. Heterointerface engineering ofβ-chitin/carbon nano-onions/Ni–P composites with boosted maxwell-wagner-sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 2022, 14, 85.

[13]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[14]

Liang, L. L.; Yang, X. Y.; Li, C.; Yu, R. L.; Zhang, B. S.; Yang, Y.; Ji, G. B. MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 2024, 36, 2313939.

[15]

Pan, F.; Wu, X. F.; Batalu, D.; Lu, W.; Guan, H. T. Assembling of low-dimensional aggregates with interlaminar electromagnetic synergy network for high-efficient microwave absorption. Adv. Powder Mater. 2023, 2, 100100.

[16]

Shu, X. F.; Cheng, J.; Fang, B.; Wang, J. T.; Song, Y. N.; Lu, W.; Zhao, Z. J. Morphology-dependent magnetic role of ZIFs in nitrogen-doped MXene as metallic conductor microwave absorber. Chem. Eng. J. 2023, 474, 145817.

[17]

Yang, C. H.; Tang, Y.; Tian, Y. P.; Luo, Y. Y.; Faraz Ud Din, M.; Yin, X. T.; Que, W. X. Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance. Adv. Energy Mater. 2018, 8, 1802087.

[18]

Pan, Z. H.; Ji, X. H. Facile synthesis of nitrogen and oxygen co-doped C@Ti3C2 MXene for high performance symmetric supercapacitors. J. Power Sources 2019, 439, 227068.

[19]

Jiang, D.; Wei, M.; Du, X. J.; Qin, M.; Shan, X. L.; Chen, Z. D. One-pot synthesis of ZnO quantum dots/N-doped Ti3C2 MXene: Tunable nitrogen-doping properties and efficient electrochemiluminescence sensing. Chem. Eng. J. 2022, 430, 132771.

[20]

Chen, Y.; Gao, Z.; Zhang, B.; Zhao, S. C.; Qin, Y. Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors. J. Power Sources 2016, 315, 254–260.

[21]

Li, Y. Z.; Dong, J.; Zhang, J. X.; Zhao, X.; Yu, P. P.; Jin, L.; Zhang, Q. H. Nitrogen-doped carbon membrane derived from polyimide as free-standing electrodes for flexible supercapacitors. Small 2015, 11, 3476–3484.

[22]

Machnikowski, J.; Grzyb, B.; Weber, J. V.; Frackowiak, E.; Rouzaud, J. N.; Béguin, F. Structural and electrochemical characterisation of nitrogen enriched carbons produced by the co-pyrolysis of coal-tar pitch with polyacrylonitrile. Electrochim. Acta 2004, 49, 423–432.

[23]

Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T. Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc. 2013, 135, 7823–7826.

[24]

Li, Y.; Luo, Z.; Yang, L.; Luo, Y. M.; Li, Q.; Zhang, L. Y.; Xiang, K. Influence of polyamide acid coating reaction on the properties of aramid fibre. Polymer 2019, 178, 121550.

[25]

Chen, W. J.; Chen, W.; Zhang, B. Q.; Yang, S. Y.; Liu, C. Y. Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization. Polymer 2017, 109, 205–215.

[26]

Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

[27]

Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

[28]

Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

[29]

Guan, H. T.; Wang, Q. Y.; Wu, X. F.; Pang, J.; Jiang, Z. Y.; Chen, G.; Dong, C. J.; Wang, L. H.; Gong, C. H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B: Eng. 2021, 207, 108562.

[30]

Wang, B. J.; Li, S. K.; Huang, F. Z.; Wang, S. P.; Zhang, H.; Liu, F. H.; Liu, Q. C. Construction of multiple electron transfer paths in 1D core-shell hetetrostructures with MXene as interlayer enabling efficient microwave absorption. Carbon 2022, 187, 56–66.

[31]

Zhang, Z.; Zhao, H. Q.; Gu, W. H.; Yang, L. J.; Zhang, B. S. A biomass derived porous carbon for broadband and lightweight microwave absorption. Sci. Rep. 2019, 9, 18617.

[32]

Li, Q. S.; Zhu, J. J.; Wang, S. N.; Huang, F.; Liu, Q. C.; Kong, X. K. Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon 2020, 161, 639–646.

[33]

Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Zhang, B. S.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511.

[34]

Cao, Y. H.; Wang, K. L.; Wang, X. M.; Gu, Z. R.; Fan, Q. H.; Gibbons, W.; Hoefelmeyer, J. D.; Kharel, P. R.; Shrestha, M. Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochim. Acta 2016, 212, 839–847.

[35]

Zhou, Y.; Zhou, W. J.; Ni, C. H.; Yan, S. G.; Yu, L. M.; Li, X. “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents. Chem. Eng. J. 2022, 430, 132621.

[36]

Liu, H. L.; Wang, P.; Zhang, B.; Li, H. Y.; Li, J.; Li, Y. J.; Chen, Z. Enhanced thermal shrinkage behavior of phenolic-derived carbon aerogel-reinforced by HNTs with superior compressive strength performance. Ceram. Int. 2021, 47, 6487–6495.

[37]

Liang, X. C.; Liu, S. Y.; Zhong, S. J.; Zhang, S. T.; Meng, X. W.; Zhang, Y.; Yu, M. J.; Wang, C. G. A novel synthesis of Porous Fe4N/carbon hollow microspheres for thin and efficient electromagnetic wave absorbers. J. Colloid Interface Sc. 2023, 637, 123–133.

[38]

Shang, S. S.; Ye, X.; Jiang, X.; You, Q.; Zhong, Y.; Wu, X. D.; Cui, S. Preparation and characterization of cellulose/attapulgite composite aerogels with high strength and hydrophobicity. J. Non-Cryst. Solids 2021, 569, 120922.

[39]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

[40]

Wang, Y.; Qu, Z. J.; Wang, W.; Qian, H. F.; Song, X. Y.; Yu, D. Multidimensional nanomaterials synergistic polyimide nanofiber/MXene/NiFe2O4 hybrid aerogel for high-performance microwave absorption. Chem. Eng. J. 2023, 470, 144435.

[41]

Liu, N. N.; Yu, L. L.; Liu, B. J.; Yu, F.; Li, L. Q.; Xiao, Y.; Yang, J. H.; Ma, J. Ti3C2-MXene partially derived hierarchical 1D/2D TiO2/Ti3C2 heterostructure electrode for high-performance capacitive deionization. Adv. Sci. 2023, 10, 2204041.

[42]

Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Rapid and direct growth of bipyramid TiO2 from Ti3C2T x MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem. Eng. J. 2020, 383, 123095.

[43]

Gao, X. R.; Wang, B. B.; Wang, K. K.; Xu, S.; Liu, S. P.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Design of Ti3C2T x /TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 2021, 583, 510–521.

[44]

Li, R. K.; Lu, J. Q.; Li, C. J.; Cui, Y.; Lv, D. F.; Chen, Y. J.; Wei, Y. N.; Wei, H. Y.; Liang, B.; Bu, J. L. Mesoporous vanadium nitride nanofiber@N-doped carbon with excellent microwave absorption and anti-corrosion. Colloids Surf. A: Physicochem. Eng. Aspects 2024, 686, 133420.

[45]

Yu, J. L.; Zeng, M. L.; Zhou, J.; Chen, H. D.; Cong, G. T.; Liu, H. C.; Ji, M. W.; Zhu, C. Z.; Xu, J. A one-pot synthesis of nitrogen doped porous MXene/TiO2 heterogeneous film for high-performance flexible energy storage. Chem. Eng. J. 2021, 426, 130765.

[46]

Wu, F. S.; Hu, P. Y.; Hu, F. Y.; Tian, Z. H.; Tang, J. W.; Zhang, P. G.; Pan, L.; Barsoum, M. W.; Cai, L. Z.; Sun, Z. M. Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 2023, 15, 194.

[47]

Fang, G.; He, T. A.; Hu, X. X.; Yang, X. M.; Zheng, S. Q.; Xu, G. Y.; Liu, C. Y. Bionic octopus structure Inspired Stress-Driven reconfigurable microwave absorption and multifunctional compatibility in infrared stealth and De-icing. Chem. Eng. J. 2023, 467, 143266.

[48]

Li, X. Y.; Liu, S. Y.; Meng, X. W.; Zhang, S. T.; Yu, M. J.; Wu, L. F.; Liang, X. M. Modified antistatic carbonaceous fiber with excellent hydrophobicity, environmental stability and radar absorption performance. Carbon 2024, 229, 119501.

[49]

Han, F.; Luo, S. J.; Xie, L. Y.; Zhu, J. J.; Wei, W.; Chen, X.; Liu, F. W.; Chen, W.; Zhao, J. L.; Dong, L. et al. Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl. Mater. Interfaces 2019, 11, 8443–8452.

[50]

Xing, C. Y.; Chen, S. Y.; Liang, X.; Liu, Q.; Qu, M. M.; Zou, Q. S.; Li, J. H.; Tan, H.; Liu, L. P.; Fan, D. Y. et al. Two-dimensional MXene (TiC)-integrated cellulose hydrogels: Toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 2018, 10, 27631–27643.

[51]

Yang, M. L.; Yuan, Y.; Li, Y.; Sun, X. X.; Wang, S. S.; Liang, L.; Ning, Y. H.; Li, J. J.; Yin, W. L.; Li, Y. B. Anisotropic electromagnetic absorption of aligned Ti3C2T x MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 2020, 12, 33128–33138.

[52]

Han, M. K.; Yin, X. W.; Wu, H.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 2016, 8, 21011–21019.

[53]

Yang, K.; Cui, Y. H.; Wan, L. Y.; Wang, Y. B.; Tariq, M. R.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Preparation of three-dimensional Mo2C/NC@MXene and its efficient electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2022, 14, 7109–7120.

[54]

Cheng, Y. J.; Sun, X. X.; Yang, S.; Wang, D.; Liang, L.; Wang, S. S.; Ning, Y. H.; Yin, W. L.; Li, Y. B. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation. Chem. Eng. J. 2023, 452, 139376.

[55]

Qiu, J. F.; Liao, J.; Wang, G. H.; Du, R. X.; Tsidaeva, N.; Wang, W. Implanting N-doped CQDs into rGO aerogels with diversified applications in microwave absorption and wastewater treatment. Chem. Eng. J. 2022, 443, 136475.

[56]

Yang, D. D.; Dong, S.; Xin, J. Q.; Liu, C.; Hu, P. T.; Xia, L. S.; Hong, C. Q.; Zhang, X. H. Robust and thermostable C/SiOC composite aerogel for efficient microwave absorption, thermal insulation and flame retardancy. Chem. Eng. J. 2023, 469, 143851.

[57]

Jin, L.; Wang, J. Q.; Wu, F.; Yin, Y. N.; Zhang, B. L. MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: Optimum composition and performance evaluation. Carbon 2021, 182, 770–780.

[58]

Wu, F.; Liu, Z. H.; Wang, J. Q.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 2021, 422, 130591.

[59]

Xia, L.; Zhang, X. Y.; Yang, Y. N.; Zhang, J.; Zhong, B.; Zhang, T.; Wang, H. T. Enhanced electromagnetic wave absorption properties of laminated SiCNW-Cf/lithium–aluminum–silicate (LAS) composites. J. Alloys Compd. 2018, 748, 154–162.

[60]

Zheng, Q.; Wang, J. Q.; Yu, M. J.; Cao, W. Q.; Zhai, H. Z.; Cao, M. S. Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon 2023, 210, 118049.

[61]

Cai, Z.; Ma, Y. F.; Zhao, K.; Yun, M. C.; Wang, X. Y.; Tong, Z. M.; Wang, M.; Suhr, J.; Xiao, L. T.; Jia, S. T. et al. Ti3C2T x MXene/graphene oxide/Co3O4 nanorods aerogels with tunable and broadband electromagnetic wave absorption. Chem. Eng. J. 2023, 462, 142042.

[62]

Fang, G.; Wu, Y.; Xu, G. Y.; Peng, X. L.; Li, Y. P.; Zhang, Y. J.; Liu, C. Y. Data-driven oriented diatomic doping strategy to customize frequency dispersion for considerable microwave absorption. J. Colloid Interface Sci. 2024, 654, 327–338.

[63]

Liu, J. L.; Zhang, L. M.; Wu, H. J.; Zang, D. Y. Boosted electromagnetic wave absorption performance from vacancies, defects and interfaces engineering in Co(OH)F/Zn0.76Co0.24S/Co3S4 composite. Chem. Eng. J. 2021, 411, 128601.

[64]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[65]

Yang, Y. N.; Xia, L.; Zhang, T.; Shi, B.; Huang, L. N.; Zhong, B.; Zhang, X. Y.; Wang, H. T.; Zhang, J.; Wen, G. W. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 2018, 352, 510–518.

[66]

Luo, J. H.; Dai, Z. Y.; Feng, M. N.; Chen, X. W.; Sun, C. H.; Xu, Y. Hierarchically porous carbon derived from natural Porphyra for excellent electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 129, 206–214.

[67]

Zhang, S.; Liu, X. H.; Jia, C. Y.; Sun, Z. S.; Jiang, H. W.; Jia, Z. R.; Wu, G. L. Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 2023, 15, 204.

[68]

Shen, Y. N.; Li, Q. H.; Xu, S. L.; Liu, X. Electromagnetic wave absorption of multifunctional cementitious composites incorporating polyvinyl alcohol (PVA) fibers and fly ash: Effects of microstructure and hydration. Cem. Concr. Res. 2021, 143, 106389.

[69]

Liu, Y.; Liu, X. H.; E, X. Y.; Wang, B. B.; Jia, Z. R.; Chi, Q. G.; Wu, G. L. Synthesis of Mn x O y @C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 2022, 103, 157–164.

[70]

Li, L.; Wang, T. H.; Liu, Q. L.; Cao, Y. M.; Qiu, J. S. A high CO2 permselective mesoporous silica/carbon composite membrane for CO2 separation. Carbon 2012, 50, 5186–5195.

[71]

Fang, G.; Liu, C. Y.; Xu, M.; Zhang, X. H.; Wu, Y.; Kim, D. H.; Ji, G. B. The elaborate design of multi-polarization effect by non-edge defect strategy for ultra-broad microwave absorption. Adv. Funct. Mater. 2024, 34, 2404532.

[72]

Gong, X. Y.; Li, M.; Ge, Y.; Wang, E. H.; Liu, X. Z.; Chen, Z. Y.; Wang, J. H.; Bao, Z. Y.; Wu, Y. C. Enhanced low-frequency microwave absorption of N-doped biomass derived carbon. Mater. Today Commun. 2023, 37, 107093.

[73]

Nelson, J. K.; Fothergill, J. C. Internal charge behaviour of nanocomposites. Nanotechnology 2004, 15, 586–595.

[74]

Wang, G.; Li, C. F.; Estevez, D.; Xu, P.; Peng, M. Y.; Wei, H. J.; Qin, F. X. Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 2023, 15, 152.

[75]

Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of Nano-Micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

Nano Research
Article number: 94907169
Cite this article:
Li Y, Dong C, Wang S, et al. Micro-macro regulating heterogeneous interface engineering in 3D N-doped carbon fiber/MXene/TiO2 nano-aerogel for boosting electromagnetic wave absorption. Nano Research, 2025, 18(2): 94907169. https://doi.org/10.26599/NR.2025.94907169

837

Views

57

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 August 2024
Revised: 20 November 2024
Accepted: 02 December 2024
Published: 10 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return