Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing lightweight, green, and flexible wearable electronics with high sensitivity and multifunctional sensing capabilities is of important significance in the field of outdoor sports, such as mountaineering, animal tracking and protection. This work proposes a silk fibroin fibers-based triboelectric nanogenerator (SF-TENG) to harvest tiny energy from human fingertip tapping and act as a self-powered tactile sensor. The SF-TENG adopts a green, efficient, and low-cost fabrication strategy, in which a breathable and electropositive silk fibroin fiber membrane and a silver conductive layer are prepared by electrostatic spinning and magnetron sputtering, and combined with a conductive cloth and a breathable tape to form a flexible sensor that can be attached to a human skin. The thin and soft portable TENG device, having a thickness of only 0.3 mm and a mass of 354 mg at the dimension of 4.5 cm × 4.5 cm, can generate a maximum power density of 1.0 mW·m–2. Furthermore, the SF-TENG has excellent sensitivity of 1.767 mV·Pa–1 with good cyclic stability. The superior sensing characteristics provide new avenues for Morse code applications toward outdoor wearable autonomous communication. The proposed SF-TENG offers promising solutions in multi-scenario outdoor sport, human-machine interface interaction, and security systems.
Zhang, Y. F.; Fu, J. J.; Ding, Y. C.; Babar, A. A.; Song, X.; Chen, F.; Yu, X. G.; Zheng, Z. J. Thermal and moisture managing E-textiles enabled by Janus hierarchical gradient honeycombs. Adv. Mater. 2024, 36, 2311633.
An, Z. J.; Fu, Q. Q.; Lv, J. J.; Zhou, T.; Wu, Y.; Lu, Y. L.; Liu, G.; Shi, Z. H.; Li, X.; Zhang, F. N. et al. Body heat powered wirelessly wearable system for real-time physiological and biochemical monitoring. Adv. Funct. Mater. 2023, 33, 2303361.
Zhang, Q. X.; Lei, D. D.; Liu, N. S.; Liu, Z. Y.; Ren, Z. Q.; Yin, J. Y.; Jia, P. X.; Lu, W. Z.; Gao, Y. H. A zinc-ion battery-type self-powered pressure sensor with long service life. Adv. Mater. 2022, 34, 2205369.
Chao, M. Y.; Di, P. J.; Yuan, Y.; Xu, Y. J.; Zhang, L. Q.; Wan, P. B. Flexible breathable photothermal-therapy epidermic sensor with MXene for ultrasensitive wearable human-machine interaction. Nano Energy 2023, 108, 108201.
Guo, P. W.; Tian, B.; Liang, J.; Yang, X. P.; Tang, G. L.; Li, Q. C.; Liu, Q.; Zheng, K.; Chen, X.; Wu, W. An all-printed, fast-response flexible humidity sensor based on hexagonal-WO3 nanowires for multifunctional applications. Adv. Mater. 2023, 35, 2304420.
Chen, X. P.; Luo, F.; Yuan, M.; Xie, D. L.; Shen, L.; Zheng, K.; Wang, Z. P.; Li, X. D.; Tao, L. Q. A dual-functional graphene-based self-alarm health-monitoring E-skin. Adv. Funct. Mater. 2019, 29, 1904706.
Li, L. L.; Wang, D. P.; Zhang, D.; Ran, W. H.; Yan, Y. X.; Li, Z. X.; Wang, L. L.; Shen, G. Z. Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile. Adv. Funct. Mater. 2021, 31, 2104782.
Fang, D.; Ding, S.; Dai, Z. Y.; Zhong, J. W.; Zhou, B. P. Wearable patch with direction-aware sensitivity of in-plane force for self-powered and single communication channel based human-machine interaction. Chem. Eng. J. 2023, 468, 143664.
Galli, V.; Sailapu, S. K.; Cuthbert, T. J.; Ahmadizadeh, C.; Hannigan, B. C.; Menon, C. Passive and wireless all-textile wearable sensor system. Adv. Sci. 2023, 10, 2206665.
Kim, J. H.; Marcus, C.; Ono, R.; Sadat, D.; Mirzazadeh, A.; Jens, M.; Fernandez, S.; Zheng, S. Q.; Durak, T.; Dagdeviren, C. A conformable sensory face mask for decoding biological and environmental signals. Nat. Electron. 2022, 5, 794–807.
Cao, Y.; Yang, Y.; Qu, X. C.; Shi, B. J.; Xu, L. L.; Xue, J. T.; Wang, C.; Bai, Y.; Gai, Y. S.; Luo, D. et al. A self-powered triboelectric hybrid coder for human-machine interaction. Small Methods 2022, 6, 2101529.
Sun, M. M.; Xiang, X. P.; Qin, H. Y.; Li, P. Y.; Li, Y. X.; Zhao, J. X.; Zhai, X. J.; Wu, L. D. Polydopamine-triggered adhesive and conductive hydrogel for Morse code communication at polar environments. Sens. Actuators A: Phys. 2023, 364, 114813.
Gong, T.; Jia, J.; Sun, X. R.; Li, W. D.; Ke, K.; Bao, R. Y.; Yang, W. Design strategy for hierarchical structure of carbon black on microporous elastomer surface toward stretchable and compressive strain sensors. Carbon 2023, 206, 53–61.
Gu, Y. F.; Hao, J. Y.; Wu, T. C.; Zhang, Z. G.; Zhang, Z. X.; Li, Q. H. Bimetallic MoNi/WNi nanoalloys for ultra-sensitive wearable temperature sensors. J. Mater. Chem. A 2022, 10, 5402–5409.
Di, X.; Hou, J. W.; Yang, M. M.; Wu, G. L.; Sun, P. C. A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission. Mater. Horiz. 2022, 9, 3057–3069.
Adepu, V.; Tathacharya, M.; Cs, R.; Mattela, V.; Sahatiya, P. TeNWs/Ti3C2T x Nanohybrid-based flexible pressure sensors for personal safety applications using morse code. ACS Appl. Nano Mater. 2022, 5, 18209–18219.
Sun, X. L.; He, Q. Q.; Hou, Y.; Zheng, X.; Bi, P.; Xu, Y. F.; Zhang, X. Z.; Liu, Y.; Xiong, R.; Yang, Y. et al. Self-healing flexible pressure sensor for human motion detection based on silver-nanoparticle-modified polyimide membranes. ACS Appl. Polym. Mater. 2023, 5, 5951–5960.
Tang, M. C.; Liu, X. H.; Zhang, D. Z.; Zhang, H.; Xi, G. S. Ultra-sensitive humidity QCM sensor based on sodium alginate/polyacrylonitrile composite film for contactless Morse code communication. Sens. Actuators B: Chem. 2024, 407, 135429.
Liu, H.; Qin, J. X.; Yang, X. G.; Lv, C. F.; Huang, W. T.; Li, F. K.; Zhang, C.; Wu, Y. R.; Dong, L.; Shan, C. X. Highly sensitive humidity sensors based on hexagonal boron nitride nanosheets for contactless sensing. Nano Res. 2023, 16, 10279–10286.
Wang, Z. S.; Wan, D.; Fang, R.; Yuan, Z. Y.; Zhuo, K.; Wang, T.; Zhang, H. L. Water-based triboelectric nanogenerator for wireless energy transmission and self-powered communication via a solid-liquid-solid interaction. Appl. Surf. Sci. 2022, 605, 154765.
Bagchi, B.; Datta, P.; Fernandez, C. S.; Gupta, P.; Jaufuraully, S.; David, A. L.; Siassakos, D.; Desjardins, A.; Tiwari, M. K. Flexible triboelectric nanogenerators using transparent copper nanowire electrodes: Energy harvesting, sensing human activities and material recognition. Mater. Horiz. 2023, 10, 3124–3134.
Sun, Q. Z.; Ren, G. Z.; He, S. H.; Tang, B.; Li, Y. J.; Wei, Y. W.; Shi, X. W.; Tan, S. X.; Yan, R.; Wang, K. L. et al. Charge dispersion strategy for high-performance and rain-proof triboelectric nanogenerator. Adv. Mater. 2024, 36, 2307918.
Sun, Q. Z.; Liang, F.; Ren, G. Z.; Zhang, L. R.; He, S. H.; Gao, K.; Gong, Z. Y.; Zhang, Y. L.; Kang, X.; Zhu, C. C. et al. Density-of-states matching-induced ultrahigh current density and high-humidity resistance in a simply structured triboelectric nanogenerator. Adv. Mater. 2023, 35, 2210915.
Zhao, H. F.; Wang, H.; Yu, H. Y.; Xu, Q. H.; Li, X. S.; Guo, J.; Shao, J. J.; Wang, Z. L.; Xu, M. Y.; Ding, W. B. Theoretical modeling of contact-separation mode triboelectric nanogenerators from initial charge distribution. Energy Environ. Sci. 2024, 17, 2228–2247.
Yan, R.; Sun, Q. Z.; Shi, X. W.; Sun, Z. Q.; Tan, S. X.; Tang, B.; Chen, W. T.; Liang, F.; Yu, H. D.; Huang, W. Skin-interfaced self-powered pressure and strain sensors based on fish gelatin-based hydrogel for wireless wound strain and human motion detection. Nano Energy 2023, 118, 108932.
Jiang, Y.; Dong, K.; Li, X.; An, J.; Wu, D. Q.; Peng, X.; Yi, J.; Ning, C.; Cheng, R. W.; Yu, P. T. et al. Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors. Adv. Funct. Mater. 2021, 31, 2005584.
Jiang, Y.; Zhang, Y. F.; Ning, C.; Ji, Q. Q.; Peng, X.; Dong, K.; Wang, Z. L. Ultrathin eardrum-inspired self-powered acoustic sensor for vocal synchronization recognition with the assistance of machine learning. Small 2022, 18, 2106960.
Wu, H.; Wang, Z. H.; Zhu, B. Y.; Wang, H. Q.; Lu, C. Y.; Kang, M. C.; Kang, S. L.; Ding, W. B.; Yang, L. J.; Liao, R. J. et al. All-in-one sensing system for online vibration monitoring via IR wireless communication as driven by high-power TENG. Adv. Energy Mater. 2023, 13, 2300051.
Hong, H. X.; Yang, X. Y.; Cui, H.; Zheng, D.; Wen, H. Y.; Huang, R. Y.; Liu, L. Q.; Duan, J. L.; Tang, Q. W. Self-powered seesaw structured spherical buoys based on a hybrid triboelectric-electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 2022, 15, 621–632.
Yang, S. H.; Zhang, C. Z.; Du, Z. C.; Tu, Y. Q.; Dai, X. G.; Huang, Y.; Fan, J. Y.; Hong, Z. Y.; Jiang, T.; Wang, Z. L. Fluid oscillation-driven Bi-directional air turbine triboelectric nanogenerator for ocean wave energy harvesting. Adv. Energy Mater. 2024, 14, 2304184.
Ren, Z. W.; Liang, X.; Liu, D.; Li, X. J.; Ping, J. F.; Wang, Z. M.; Wang, Z. L. Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 2021, 11, 2101116.
Dong, X. Y.; Liu, Q.; Liu, S.; Wu, R. H.; Ma, L. Y. Silk fibroin based conductive film for multifunctional sensing and energy harvesting. Adv. Fiber Mater. 2022, 4, 885–893.
Seifaddini, P.; Sheikhahmadi, S.; Kolahdouz, M.; Aghababa, H. Smart printed triboelectric wearable sensor with high performance for glove-based motion detection. ACS Appl. Mater. Interfaces 2024, 16, 9506–9516.
Mi, H. Y.; Jing, X.; Zheng, Q. F.; Fang, L. M.; Huang, H. X.; Turng, L. S.; Gong, S. Q. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy 2018, 48, 327–336.
Chen, S. W.; Cao, X.; Wang, N.; Ma, L.; Zhu, H. R.; Willander, M.; Jie, Y.; Wang, Z. L. An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 2017, 7, 1601255.
Qiu, H. J.; Song, W. Z.; Wang, X. X.; Zhang, J.; Fan, Z. Y.; Yu, M.; Ramakrishna, S.; Long, Y. Z. A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy 2019, 58, 536–542.
Chandrasekhar, A.; Vivekananthan, V.; Khandelwal, G.; Kim, S. J. A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code. Nano Energy 2019, 60, 850–856.
Xu, Z. J.; Qiu, W.; Fan, X. W.; Shi, Y. T.; Gong, H.; Huang, J. N.; Patil, A.; Li, X. Y.; Wang, S. T.; Lin, H. B. et al. Stretchable, stable, and degradable silk fibroin enabled by mesoscopic doping for finger motion triggered color/transmittance adjustment. ACS Nano 2021, 15, 12429–12437.
Pang, C. L.; Li, F.; Hu, X. R.; Meng, K. Y.; Pan, H.; Xiang, Y. Degradable silk fibroin based piezoresistive sensor for wearable biomonitoring. Discover Nano 2024, 19, 55.
DeBari, M. K.; King III, C. I.; Altgold, T. A.; Abbott, R. D. Silk fibroin as a green material. ACS Biomater. Sci. Eng. 2021, 7, 3530–3544.
Li, Z. L.; Xu, S. X.; Xu, Z. J.; Shu, S.; Liu, G. L.; Zhou, J. D.; Lin, D.; Tang, W. Enhancing cellular behavior in repaired tissue via silk fibroin-integrated triboelectric nanogenerators. Microsyst. Nanoeng. 2024, 10, 68.
Xiong, Q. H.; Yang, Z. H.; Zhang, X. H. Flexible triboelectric nanogenerator based on silk fibroin-modified carbon nanotube arrays. Chem. Eng. J. 2024, 482, 148986.
Tan, X. Q.; Huang, Z. Y.; Pei, H. R.; Jia, Z. C.; Zheng, J. M. Highly porous, ultralight, biocompatible silk fibroin aerogel-based triboelectric nanogenerator. ACS Sens. 2024, 9, 3938–3946.
Su, M.; Kim, B. Silk fibroin-carbon nanotube composites based fiber substrated wearable triboelectric nanogenerator. ACS Appl. Nano Mater. 2020, 3, 9759–9770.
Dudem, B.; Dharmasena, R. D. I. G.; Graham, S. A.; Leem, J. W.; Patnam, H.; Mule, A. R.; Silva, S. R. P.; Yu, J. S. Exploring the theoretical and experimental optimization of high-performance triboelectric nanogenerators using microarchitectured silk cocoon films. Nano Energy 2020, 74, 104882.
He, J. H.; Xie, Z. Q.; Yao, K. M.; Li, D. F.; Liu, Y. M.; Gao, Z.; Lu, W.; Chang, L. Q.; Yu, X. G. Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy 2021, 81, 105590.
Kang, H.; Zhao, C. L.; Huang, J. R.; Ho, D. H.; Megra, Y. T.; Suk, J. W.; Sun, J.; Wang, Z. L.; Sun, Q.; Cho, J. H. Fingerprint-inspired conducting hierarchical wrinkles for energy-harvesting E-skin. Adv. Funct. Mater. 2019, 29, 1903580.
Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B. K.; Kim, J. H.; Ahn, J. H. Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 2019, 62, 259–267.
Wen, Z.; Yang, Y. Q.; Sun, N.; Li, G. F.; Liu, Y. N.; Chen, C.; Shi, J. H.; Xie, L. J.; Jiang, H. X.; Bao, D. Q. et al. A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors. Adv. Funct. Mater. 2018, 28, 1803684.
Zhao, G. R.; Zhang, Y. W.; Shi, N.; Liu, Z. R.; Zhang, X. D.; Wu, M. Q.; Pan, C. F.; Liu, H. L.; Li, L. L.; Wang, Z. L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310.
422
Views
85
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).