AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A phenylboronic-acid functionalized liquid photonic crystal reagent for convenient and reliable detection of glucose

Yanxuan Zhao1,§Huimin Zhu1,§Jianping Ge1,2 ( )
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
Institute of Eco-Chongming, Shanghai 202162, China

§ Yanxuan Zhao and Huimin Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

A phenylboronic-acid functionalized SiO2 liquid photonic crystal (PBA-LPC) reagent was developed for convenient and reliable detection of glucose concentration. The sensing was based on the mechanism that the mixing of PBA-LPC reagent with glucose could release H+ cations from PBA, which inhibited the deprotonation of the silanol group, weakened the particle surface charge, and blue-shifted the reflection of LPC.

Abstract

Photonic crystal sensing is an emerging technique that directly indicates the physicochemical changes with the change of structural color. However, there are still challenges in material synthesis, ease of use, and reproducibility of detection for traditional photonic crystal (PC) sensors. Here, a phenylboronic-acid functionalized SiO2 liquid photonic crystal (PBA-LPC) reagent was developed for reliable detection of glucose concentration. It is convenient to prepare/use the LPC reagent because people only need to mix the responsive substance or the analyte solution with the LPCs in synthesis/detection. The sensing was based on the mechanism that the mixing of PBA-LPC reagent with glucose could release H+ cations from PBA, which inhibited the deprotonation of the silanol group, weakened the particle surface charge, and blue-shifted the reflection of LPC. The PBA-LPC reagents responded to the glucose in different concentration ranges depending on the dosage of PBA, which ensured both a broad range detection and an accurate detection within a specific range. Meanwhile, it reported reproducible results due to the precise introduction of PBA and its sufficient interaction with glucose. Furthermore, the PBA-LPC reagent showed a selective response to glucose and good anti-interference capability against the presence of NaCl, CaSO4, KH2PO4, and Vitamin C. Due to these properties, the PBA-LPC reagent could serve as a new material for blood sugar tests and it also demonstrated the great potential of LPCs in sensing applications.

Electronic Supplementary Material

Download File(s)
7166_ESM.pdf (1.3 MB)

References

[1]

Zeng, Y.; Liu, K. L.; Ding, H. B.; Chong, Z. J.; Niu, Y. F.; Guo, Y. J.; Wei, M. X.; Du, X.; Gu, Z. Z. Direct laser writing photonic crystal hydrogels with a supramolecular sacrificial scaffold. Small 2024, 20, 2306524.

[2]

Meng, F. S.; Zheng, C. L.; Yang, W. J.; Guan, B.; Wang, J. X.; Ikeda, T.; Jiang, L. High-resolution erasable “live” patterns based on controllable ink diffusion on the 3d blue-phase liquid crystal networks. Adv. Funct. Mater. 2022, 32, 2110985.

[3]

Fu, Q. Q.; Yu, W. Y.; Bao, G. Y.; Ge, J. P. Electrically responsive photonic crystals with bistable states for low-power electrophoretic color displays. Nat. Commun. 2022, 13, 7007.

[4]

Kuang, M. X.; Wang, L. B.; Song, Y. L. Controllable printing droplets for high-resolution patterns. Adv. Mater. 2014, 26, 6950–6958.

[5]

Zhang, X.; Yin, T.; Ge, J. P. Thermochromic photonic crystal paper with integrated multilayer structure and fast thermal response: A waterproof and mechanically stable material for structural-colored thermal printing. Adv. Mater. 2024, 36, 2309344.

[6]

Hu, Y.; Qi, C. Z.; Ma, D. K.; Yang, D. P.; Huang, S. M. Multicolor recordable and erasable photonic crystals based on on-off thermoswitchable mechanochromism toward inkless rewritable paper. Nat. Commun. 2024, 15, 5643.

[7]

Qi, Y.; Chu, L.; Niu, W. B.; Tang, B. T.; Wu, S. L.; Ma, W.; Zhang, S. F. New encryption strategy of photonic crystals with bilayer inverse heterostructure guided from transparency response. Adv. Funct. Mater. 2019, 29, 1903743.

[8]

Yu, W. Y.; Zhao, Y. X.; Sheng, W. T.; Ge, J. P. Creation of nanotips on ito electrode by nanoparticle deposition: An easy way to enhance the performance of electrically responsive photonic crystal and fabricate electrically triggered anticounterfeiting tags. Adv. Funct. Mater. 2023, 33, 2304474.

[9]

Huang, H. W.; Li, H. T.; Yin, J. M.; Gu, K.; Guo, J.; Wang, C. C. Butterfly-inspired tri-state photonic crystal composite film for multilevel information encryption and anti-counterfeiting. Adv. Mater. 2023, 35, 2211117.

[10]

Li, H.; Wang, J. X.; Lin, H.; Xu, L.; Xu, W.; Wang, R. M.; Song, Y. L.; Zhu, D. B. Amplification of fluorescent contrast by photonic crystals in optical storage. Adv. Mater. 2010, 22, 1237–1241.

[11]

Shi, Y. H.; Han, J. L.; Li, C. X.; Zhao, T. H.; Jin, X.; Duan, P. F. Recyclable soft photonic crystal film with overall improved circularly polarized luminescence. Nat. Commun. 2023, 14, 6123.

[12]

Wang, Y. L.; Cui, H. Q.; Zhao, Q. L.; Du, X. M. Chameleon-inspired structural-color actuators. Matter 2019, 1, 626–638.

[13]

Sun, Y. D.; Wang, X. C.; Li, H. Y.; Zhang, S. F.; Niu, W. B. Mechanically robust photonic-ionic skin cross-linked by metal-imidazole interactions. Adv. Funct. Mater. 2024, 34, 2405345.

[14]

Wu, Y.; Wang, Y.; Zhang, S. F.; Wu, S. L. Artificial chameleon skin with super-sensitive thermal and mechanochromic response. ACS Nano 2021, 15, 15720–15729.

[15]

Li, D.; Wu, J. M.; Liang, Z. H.; Li, L. Y.; Dong, X.; Chen, S. K.; Fu, T.; Wang, X. L.; Wang, Y. Z.; Song, F. Sophisticated yet convenient information encryption/decryption based on synergistically time-/temperature-resolved photonic inks. Adv. Sci. 2023, 10, 2206290.

[16]

Chen, M.; Zhou, L.; Guan, Y.; Zhang, Y. J. Polymerized microgel colloidal crystals: Photonic hydrogels with tunable band gaps and fast response rates. Angew. Chem., Int. Ed. 2013, 52, 9961–9965.

[17]

Yin, S. N.; Yang, S. Y.; Wang, C. F.; Chen, S. Magnetic-directed assembly from janus building blocks to multiplex molecular-analogue photonic crystal structures. J. Am. Chem. Soc. 2016, 138, 566–573.

[18]

Diao, Y. Y.; Liu, X. Y.; Toh, G. W.; Shi, L.; Zi, J. Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing. Adv. Funct. Mater. 2013, 23, 5373–5380.

[19]

Zhang, Y. Q.; Fu, Q. Q.; Ge, J. P. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum. Nat. Commun. 2015, 6, 7510.

[20]

Fu, F. F.; Shang, L. R.; Chen, Z. Y.; Yu, Y. R.; Zhao, Y. J. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, eaar8580.

[21]

Shin, J.; Braun, P. V.; Lee, W. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens. Actuators B: Chem. 2010, 150, 183–190.

[22]

Cai, J. Y.; Luo, W.; Pan, J. J.; Li, G.; Pu, Y. Y.; Si, L. Y.; Shi, G. P.; Shao, Y. X.; Ma, H. R.; Guan, J. G. Glucose-sensing photonic nanochain probes with color change in seconds. Adv. Sci. 2022, 9, 2105239.

[23]

Shi, T.; Kou, D. H.; Gao, L.; Xue, Y. N.; Zhang, S. F.; Ma, W. One-dimensional responsive photonic crystals assembled by polymer nanogels and TiO2 nanoparticles for rapid detection of glucose. ACS Appl. Nano Mater. 2024, 7, 3116–3128.

[24]

Lu, M. H.; Zhang, X. X.; Xu, D. Y.; Li, N.; Zhao, Y. J. Encoded structural color microneedle patches for multiple screening of wound small molecules. Adv. Mater. 2023, 35, 2211330.

[25]

Liu, Y.; Zhang, Y. J.; Guan, Y. New polymerized crystalline colloidal array for glucose sensing. Chem. Commun. 2009, 1867–1869.

[26]

Qin, J. J.; Dong, B. H.; Wang, W.; Cao, L. X. Self-regulating bioinspired supramolecular photonic hydrogels based on chemical reaction networks for monitoring activities of enzymes and biofuels. J. Colloid Interface Sci. 2023, 649, 344–354.

[27]

Ben-Moshe, M.; Alexeev, V. L.; Asher, S. A. Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal. Chem. 2006, 78, 5149–5157.

[28]

Xue, F.; Duan, T. R.; Huang, S. Y.; Wang, Q. H.; Xue, M.; Meng, Z. H. A covalently imprinted photonic crystal for glucose sensing. J. Nanomater. 2013, 2013, 530701.

[29]

Jiang, N.; Butt, H.; Montelongo, Y.; Liu, F.; Afewerki, S.; Ying, G. L.; Dai, Q.; Yun, S. H.; Yetisen, A. K. Laser interference lithography for the nanofabrication of stimuli-responsive bragg stacks. Adv. Funct. Mater. 2018, 28, 1702715.

[30]

Hou, Y.; Yuan, S.; Zhu, G. D.; You, B. H.; Xu, Y.; Jiang, W. X.; Shum, H. C.; Pong, P. W. T.; Chen, C. H.; Wang, L. Q. Photonic crystal-integrated optoelectronic devices with naked-eye visualization and digital readout for high-resolution detection of ultratrace analytes. Adv. Mater. 2023, 35, 2209004.

[31]

Xie, X. Y.; Zhang, Z. L.; Jiang, Q.; Zheng, S. T.; Yun, Y.; Wu, H.; Li, C. B.; Tian, F.; Su, M.; Li, F. Y. A rainbow structural color by stretchable photonic crystal for saccharide identification. ACS Nano 2022, 16, 20094–20099.

[32]

Kundu, D.; Hossain, S.; Mariappan, L. T.; Sahoo, S.; Karthikeyan, S.; Ramkumar, G.; Gopalan, A.; Prakash, P.; Ferdous, A. H. M. I.; Hossain, S. et al. Terahertz square core photonic crystal fiber sensor: Revolutionizing efficient blood cell detection through refractive index sensing based on surface-enhanced spectroscopic properties. Plasmonics 2024, 19, 2715–1728.

[33]

Chen, Q. S.; Wei, Z. F.; Wang, S. H.; Zhou, J.; Wu, Z. Y. A self-healing smart photonic crystal hydrogel sensor for glucose and related saccharides. Microchim. Acta 2021, 188, 210.

[34]

Rafiee, E. Photonic crystal based biosensor for diagnosis of kidney failure and diabetes. Plasmonics 2024, 19, 439–445.

[35]

Feng, X. Q.; Xu, J.; Liu, Y. X.; Zhao, W. P. Visual sensors of an inverse opal hydrogel for the colorimetric detection of glucose. J. Mater. Chem. B 2019, 7, 3576–3581.

[36]

Anzai, J. I. Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives. Mater. Sci. Eng.: C 2016, 67, 737–746.

[37]

Yang, D. P.; Ye, S. Y.; Ge, J. P. Solvent wrapped metastable colloidal crystals: Highly mutable colloidal assemblies sensitive to weak external disturbance. J. Am. Chem. Soc. 2013, 135, 18370–18376.

[38]

Yetisen, A. K.; Jiang, N.; Fallahi, A.; Montelongo, Y.; Ruiz-Esparza, G. U.; Tamayol, A.; Zhang, Y. S.; Mahmood, I.; Yang, S. A.; Kim, K. S. et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv. Mater. 2017, 29, 1606380.

[39]

Zhang, C. J.; Losego, M. D.; Braun, P. V. Hydrogel-based glucose sensors: Effects of phenylboronic acid chemical structure on response. Chem. Mater. 2013, 25, 3239–3250.

[40]

Phillips, M. D.; James, T. D. Boronic acid based modular fluorescent sensors for glucose. J. Fluoresc. 2004, 14, 549–559.

Nano Research
Article number: 94907166
Cite this article:
Zhao Y, Zhu H, Ge J. A phenylboronic-acid functionalized liquid photonic crystal reagent for convenient and reliable detection of glucose. Nano Research, 2025, 18(2): 94907166. https://doi.org/10.26599/NR.2025.94907166

144

Views

21

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 November 2024
Revised: 30 November 2024
Accepted: 02 December 2024
Published: 13 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return