AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Disentangling the role of wave function overlap, exciton–exciton interaction, carrier confinement and shape in the properties of spherical quantum wells

Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK
Show Author Information

Graphical Abstract

What are the real origins of the enhanced optical properties of spherical quantum wells?

Abstract

There is a widespread conviction, fuelled by simple effective mass theoretical modelling, that the enhanced optical properties of quantum shells (i.e., CdS/CdSe/CdS core/shell in a shell structures) derive from a combination of relaxed carrier confinement, decreased overlap between electron and hole wave functions, reduced Coulomb interaction between photoinduced charge carriers and exciton–exciton repulsion, achieved in these nanoscopic spherical quantum wells (SQWs) by shape engineering. Confirming the origins of such properties by means of a more sophisticated theoretical framework is however important to ensure that future efforts at further improvement do not pursue the wrong strategy. Using the atomistic semiempirical pseudopotential method, we show that most of the assumptions behind such effects are incorrect, and that the origins of the peculiar optical properties of quantum shells are to be found elsewhere.

Electronic Supplementary Material

Download File(s)
7162_ESM.pdf (329.3 KB)

References

[1]

Kholmicheva, N.; Budkina, D. S.; Cassidy, J.; Porotnikov, D.; Harankahage, D.; Boddy, A.; Galindo, M.; Khon, D.; Tarnovsky, A. N.; Zamkov, M. Sustained biexciton populations in nanoshell quantum dots. ACS Photonics 2019, 6, 1041–1050.

[2]

Jeong, B. G.; Park, Y. S.; Chang, J. H.; Cho, I.; Kim, J. K.; Kim, H.; Char, K.; Cho, J.; Klimov, V. I.; Park, P. et al. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking. ACS Nano 2016, 10, 9297–9305.

[3]

Cassidy, J.; Diroll, B. T.; Mondal, N.; Berkinsky, D. B.; Zhao, K. H.; Harankahage, D.; Porotnikov, D.; Gately, R.; Khon, D.; Proppe, A. et al. Quantum shells boost the optical gain of lasing media. ACS Nano 2022, 16, 3017–3026.

[4]

Marder, A. A.; Cassidy, J.; Harankahage, D.; Beavon, J.; Gutiérrez-Arzaluz, L.; Mohammed, O. F.; Mishra, A.; Adams, A. C.; Slinker, J. D.; Hu, Z. J. et al. CdS/CdSe/CdS spherical quantum wells with near-unity biexciton quantum yield for light-emitting-device applications. ACS Materials Lett. 2023, 5, 1411–1419.

[5]

Harankahage, D.; Cassidy, J.; Beavon, J.; Huang, J. M.; Brown, N.; Berkinsky, D. B.; Marder, A.; Kayira, B.; Montemurri, M.; Anzenbacher, P. et al. Quantum shell in a shell: Engineering colloidal nanocrystals for a high-intensity excitation regime. J. Am. Chem. Soc. 2023, 145, 13326–13334.

[6]

Nagamine, G.; Jeong, B. G.; Ferreira, T. A. C.; Chang, J. H.; Park, K.; Lee, D. C.; Bae, W. K.; Padilha, L. A. Efficient optical gain in spherical quantum wells enabled by engineering biexciton interactions. ACS Photonics 2020, 7, 2252–2264.

[7]

Li, Y. H.; Walsh, A.; Yin, W. J.; Yang, J. H.; Li, J.; Da Silva, J. L. F.; Gong, X. G.; Wei, S. H. Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors. Appl. Phys. Lett. 2009, 94, 212109.

[8]

Schrier, J.; Wang, L. W. Electronic structure of nanocrystal quantum-dot quantum wells. Phys. Rev. B 2006, 73, 245332.

[9]

Li, J. B.; Wang, L. W. First principle study of core/shell structure quantum dots. Appl. Phys. Lett. 2004, 84, 3648–3650.

[10]

Garcia-Santamaría, F.; Brovelli, S.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Crooker, S. A.; Klimov, V. I. Breakdown of volume scaling in auger recombination in CdSe/CdS heteronanocrystals: The role of the core–shell interface. Nano Lett. 2011, 11, 687–693.

[11]

Shionoya, S.; Saito, H.; Hanamura, E.; Akimoto, O. Anisotropic excitonic molecules in CdS and CdSe. Solid State Commun. 1973, 12, 223–226.

[12]

Achermann, M.; Hollingsworth, J. A.; Klimov, V. I. Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals. Phys. Rev. B 2003, 68, 245302.

[13]

Shumway, J.; Franceschetti, A.; Zunger, A. Correlation versus mean-field contributions to excitons, multiexcitons, and charging energies in semiconductor quantum dots. Phys. Rev. B 2001, 63, 155316.

[14]

Bisschop, S.; Geiregat, P.; Aubert, T.; Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 2018, 12, 9011–9021.

[15]

Franceschetti, A.; Fu, H.; Wang, L. W.; Zunger, A. Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 1999, 60, 1819–1829.

[16]

Piryatinski, A.; Ivanov, S. A.; Tretiak, S.; Klimov, V. I. Effect of quantum and dielectric confinement on the exciton–exciton interaction energy in type II core/shell semiconductor nanocrystals. Nano Lett. 2007, 7, 108–115.

[17]

Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermann, M.; Bezel, I.; McGuire, J. A.; Piryatinski, A. Single-exciton optical gain in semiconductor nanocrystals. Nature 2007, 447, 441–446.

[18]

van Driel, A. F.; Allan, G.; Delerue, C.; Lodahl, P.; Vos, W. L.; Vanmaekelbergh, D. Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: Influence of dark states. Phys. Rev. Lett. 2005, 95, 236804.

[19]

Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.; Grim, J. Q.; Casu, A.; Genovese, A.; Vicidomini, G.; Diaspro, A.; Brovelli, S. et al. Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route. J. Mater. Chem. C 2014, 2, 3439–3447.

[20]

Califano, M.; Franceschetti, A.; Zunger, A. Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots. Phys. Rev. B 2007, 75, 115401.

[21]

Califano, M.; Franceschetti, A.; Zunger, A. Temperature dependence of excitonic radiative decay in CdSe quantum dots: The role of surface hole traps. Nano Lett. 2005, 5, 2360–2364.

[22]

Sills, A.; Harrison, P.; Califano, M. Exciton dynamics in InSb colloidal quantum dots. J. Phys. Chem. Lett. 2016, 7, 31–35.

[23]

Califano, M. Tetrahedral vs spherical nanocrystals: Does the shape really matter. Chem. Mater. 2024, 36, 1162–1171.

[24]

García-Santamaría, F.; Chen, Y. F.; Vela, J.; Schaller, R. D.; Hollingsworth, J. A.; Klimov, V. I. Suppressed auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett. 2009, 9, 3482–3488.

[25]

Robel, I.; Gresback, R.; Kortshagen, U.; Schaller, R. D.; Klimov, V. I. Universal size-dependent trend in auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 2009, 102, 177404.

[26]

Wang, L. W.; Califano, M.; Zunger, A.; Franceschetti, A. Pseudopotential theory of auger processes in CdSe quantum dots. Phys. Rev. Lett. 2003, 91, 056404.

[27]

Graf, P. A.; Kim, K.; Jones, W. B.; Wang, L. W. Surface passivation optimization using DIRECT. J. Comput. Phys. 2007, 224, 824–835.

[28]

Wang, L. W.; Zunger, A. Local-density-derived semiempirical pseudopotentials. Phys. Rev. B 1995, 51, 17398–17416.

[29]

Bányai, L.; Gilliot, P.; Hu, Y. Z.; Koch, S. W. Surface polarization instabilities of electron–hole pairs in semiconductor quantum dots. Phys. Rev. B 1992, 45, 14136–14142.

[30]

Delerue, C.; Lannoo, M.; Allan, G. Excitonic and quasiparticle gaps in Si nanocrystals. Phys. Rev. Lett. 2000, 84, 2457–2460.

[31]

Karpulevich, A.; Bui, H.; Wang, Z.; Hapke, S.; Palencia Ramírez, C.; Weller, H.; Bester, G. Dielectric response function for colloidal semiconductor quantum dots. J. Chem. Phys. 2019, 151, 224103.

[32]

Wang, L. W.; Zunger, A. Solving Schrödinger’s equation around a desired energy: Application to silicon quantum dots. J. Chem. Phys. 1994, 100, 2394–2397.

[33]

Wang, L. W.; Zunger, A. Electronic structure pseudopotential calculations of large (~ 1000 atoms) Si quantum dots. J. Phys. Chem. 1994, 98, 2158–2165.

[34]

Resta, R. Thomas-fermi dielectric screening in semiconductors. Phys. Rev. B 1977, 16, 2717–2722.

[35]

Jasieniak, J.; Califano, M.; Watkins, S. E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 2011, 5, 5888–5902.

[36]

Zhu, H. M.; Yang, Y.; Hyeon-Deuk, K.; Califano, M.; Song, N. Y.; Wang, Y. W.; Zhang, W. Q.; Prezhdo, O. V.; Lian, T. Q. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 2014, 14, 1263–1269.

[37]

Califano, M. Charge dynamics in quantum-dot-acceptor complexes in the presence of confining and deconfining ligands. J. Phys. Chem. Lett. 2020, 11, 280–285.

[38]

Harvie, A. J.; Smith, C. T.; Ahumada-Lazo, R.; Jeuken, L. J. C.; Califano, M.; Bon, R. S.; Hardman, S. J. O.; Binks, D. J.; Critchley, K. Ultrafast trap state-mediated electron transfer for quantum dot redox sensing. J. Phys. Chem. C 2018, 122, 10173–10180.

[39]

Califano, M. Origins of photoluminescence decay kinetics in CdTe colloidal quantum dots. ACS Nano 2015, 9, 2960–2967.

[40]

Li, J. B.; Wang, L. W. Shape effects on electronic states of nanocrystals. Nano Lett. 2003, 3, 1357–1363.

[41]

Zhou, Y.; Califano, M. Decoupling radiative and auger processes in semiconductor nanocrystals by shape engineering. J. Phys. Chem. Lett. 2021, 12, 9155–9161.

[42]

Califano, M.; Zhou, Y. Inverse-designed semiconductor nanocatalysts for targeted CO2 reduction in water. Nanoscale 2021, 13, 10024–10034.

[43]
Dexter, D. L. Solid State Physics; Academic Press Inc.: New York, 1958; pp 358–361.
[44]

Califano, M. Suppression of auger recombination in nanocrystals via ligand-assisted wave function engineering in reciprocal space. J. Phys. Chem. Lett. 2018, 9, 2098–2104.

Nano Research
Article number: 94907162
Cite this article:
Califano M. Disentangling the role of wave function overlap, exciton–exciton interaction, carrier confinement and shape in the properties of spherical quantum wells. Nano Research, 2025, 18(2): 94907162. https://doi.org/10.26599/NR.2025.94907162

122

Views

19

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 November 2024
Revised: 25 November 2024
Accepted: 27 November 2024
Published: 15 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return