Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Covalent organic frameworks (COFs), as an emerging class of crystalline porous polymeric material, process large surface area, ordered pore structure, good biocompatibility, excellent chemical stability, and low toxicity, making it an excellent candidate for nanotherapeutics. In this article, the recent research progress of COFs was reviewed in the antibacterial field. We introduced the antibacterial potential of COF materials themselves, covering framework structures and pore chemistry. Moreover, the synergistic antibacterial effects of COF composites were discussed, which were formed by the combination of COF with other nanomaterials. In addition, the excellent performances of COFs as nanozymes were investigated in antibacterial applications. Currently, COF-based high-efficiency antibacterial agents face great challenges and prospects in practical applications. The review will provide new COF-based methods for resolving drug-resistant bacterial issues.
Taubes, G. The bacteria fight back. Science 2008, 321, 356–361.
Wright, G. D. The antibiotic resistome: The nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007, 5, 175–186.
Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51.
Hemeg, H. A. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 2017, 12, 8211–8225.
Yougbaré, S.; Mutalik, C.; Okoro, G.; Lin, I. H.; Krisnawati, D. I.; Jazidie, A.; Nuh, M.; Chang, C. C.; Kuo, T. R. Emerging trends in nanomaterials for antibacterial applications. Int. J. Nanomed. 2021, 16, 5831–5867.
Li, B.; Mao, J. H.; Wu, J. W.; Mao, K. R.; Jia, Y. R.; Chen, F. L.; Liu, J. Nano-bio interactions: Biofilm-targeted antibacterial nanomaterials. Small 2024, 20, e2306135.
Ahmed, K. B. A.; Raman, T.; Veerappan, A. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mat. Sci. Eng.: C 2016, 68, 939–947.
Slavin, Y. N.; Asnis, J.; Häfeli, U. O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65.
Le, C. F.; Fang, C. M.; Sekaran, S. D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 2017, 61, e02340–16.
Lazzaro, B. P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368, eaau5480.
Xin, Q.; Shah, H.; Nawaz, A.; Xie, W. J.; Akram, M. Z.; Batool, A.; Tian, L. Q.; Jan, S. U.; Boddula, R.; Guo, B. D. et al. Antibacterial carbon-based nanomaterials. Adv. Mater. 2019, 31, e1804838.
Zhao, W. B.; Liu, K. K.; Wang, Y.; Li, F. K.; Guo, R.; Song, S. Y.; Shan, C. X. Antibacterial carbon dots: Mechanisms, design, and applications. Adv. Healthc. Mater. 2023, 12, e2300324.
Shen, M. F.; Forghani, F.; Kong, X. Q.; Liu, D. H.; Ye, X. Q.; Chen, S. G.; Ding, T. Antibacterial applications of metal-organic frameworks and their composites. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1397–1419.
Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 2019, 58, 4911–4916.
Li, S. Q.; Dong, S. J.; Xu, W. G.; Tu, S. C.; Yan, L. S.; Zhao, C. W.; Ding, J. X.; Chen, X. S. Antibacterial hydrogels. Adv. Sci. 2018, 5, 1700527.
Fu, Y.; Yang, L.; Zhang, J. H.; Hu, J. F.; Duan, G. G.; Liu, X. H.; Li, Y. W.; Gu, Z. P. Polydopamine antibacterial materials. Mater. Horiz. 2021, 8, 1618–1633.
Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.
Wang, Z. F.; Zhang, S. N.; Chen, Y.; Zhang, Z. J.; Ma, S. Q. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020, 49, 708–735.
Qi, S. P.; Guo, R. T.; Bi, Z. X.; Zhang, Z. R.; Li, C. F.; Pan, W. G. Recent progress of covalent organic frameworks-based materials in photocatalytic applications: A review. Small 2023, 19, e2303632.
Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.
Liang, X. G.; Tian, Y.; Yuan, Y. F.; Kim, Y. Ionic covalent organic frameworks for energy devices. Adv. Mater. 2021, 33, e2105647.
Bhunia, S.; Deo, K. A.; Gaharwar, A. K. 2D covalent organic frameworks for biomedical applications. Adv. Funct. Mater. 2020, 30, 2002046.
Xia, R.; Zheng, X. H.; Li, C. N.; Yuan, X. D.; Wang, J.; Xie, Z. G.; Jing, X. B. Nanoscale covalent organic frameworks with donor-acceptor structure for enhanced photothermal ablation of tumors. ACS Nano 2021, 15, 7638–7648.
Esrafili, A.; Wagner, A.; Inamdar, S.; Acharya, A. P. Covalent organic frameworks for biomedical applications. Adv. Healthc. Mater. 2021, 10, e2002090.
Li, S. M.; Zou, J.; Tan, L. F.; Huang, Z. B.; Liang, P.; Meng, X. W. Covalent organic frameworks: From linkages to biomedical applications. Chem. Eng. J. 2022, 446, 137148.
Shi, Y. Q.; Yang, J. L.; Gao, F.; Zhang, Q. C. Covalent prganic frameworks: Recent progress in biomedical applications. ACS Nano 2023, 17, 1879–1905.
Schlachter, A.; Asselin, P.; Harvey, P. D. Porphyrin-containing MOFs and COFs as heterogeneous photosensitizers for singlet oxygen-based antimicrobial nanodevices. ACS Appl. Mater. Interfaces 2021, 13, 26651–26672.
Mitra, S.; Kandambeth, S.; Biswal, B. P.; Khayum, M. A.; Choudhury, C. K.; Mehta, M.; Kaur, G.; Banerjee, S.; Prabhune, A.; Verma, S. et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J. Am. Chem. Soc. 2016, 138, 2823–2828.
Zou, Y. C.; Wang, P.; Zhang, A. P.; Qin, Z. Y.; Li, Y.; Xianyu, Y. L.; Zhang, H. Covalent organic framework-incorporated nanofibrous membrane as an intelligent platform for wound dressing. ACS Appl. Mater. Interfaces 2022, 14, 8680–8692.
Zhang, H. X.; Ma, J.; Liu, C.; Li, L.; Xu, C. N.; Li, Y. W.; Li, Y. H.; Tian, H. Y. Antibacterial activity of guanidinium-based ionic covalent organic framework anchoring Ag nanoparticles. J. Hazard. Mater. 2022, 435, 128965.
Geng, K. Y.; Arumugam, V.; Xu, H. J.; Gao, Y. N.; Jiang, D. L. Covalent organic frameworks: Polymer chemistry and functional design. Prog. Polym. Sci. 2020, 108, 101288.
Liu, Y. Y.; Meng, X. F.; Bu, W. B. Upconversion-based photodynamic cancer therapy. Coord. Chem. Rev. 2019, 379, 82–98.
Cramer, G. M.; Cengel, K. A.; Busch, T. M. Forging forward in photodynamic therapy. Cancer Res. 2022, 82, 534–536.
Fan, W. P.; Huang, P.; Chen, X. Y. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488–6519.
Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.
Lan, M. H.; Zhao, S. J.; Liu, W. M.; Lee, C. S.; Zhang, W. J.; Wang, P. F. Photosensitizers for photodynamic therapy. Adv. Healthcare Mater. 2019, 8, 1900132.
Gao, S. J.; Yan, X. Z.; Xie, G. C.; Zhu, M.; Ju, X. Y.; Stang, P. J.; Tian, Y.; Niu, Z. W. Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and tat-decorated virus coat protein. Proc. Natl. Acad. Sci. USA 2019, 116, 23437–23443.
Nguyen, V. N.; Zhao, Z.; Tang, B. Z.; Yoon, J. Organic photosensitizers for antimicrobial phototherapy. Chem. Soc. Rev. 2022, 51, 3324–3340.
Wang, H. H.; Pan, X. H.; Wang, Y. Q.; Liu, W. Z.; Dai, T.; Yuan, B. B.; Chen, X. Y.; Chen, Z. A new class of nitrobenzoic acid-based AIE photosensitizers for highly efficient photodynamic antibacterial therapy. Sci. China Mater. 2021, 64, 2601–2612.
Liu, H. H.; Jiang, Y.; Wang, Z.; Zhao, L. P.; Yin, Q. Q.; Liu, M. Nanomaterials as carriers to improve the photodynamic antibacterial therapy. Front. Chem. 2022, 10, 1044627.
Meng, F. L.; Qian, H. L.; Yan, X. P. Conjugation-regulating synthesis of high photosensitizing activity porphyrin-based covalent organic frameworks for photodynamic inactivation of bacteria. Talanta 2021, 233, 122536.
Zhang, L.; Wang, S. B.; Zhou, Y.; Wang, C.; Zhang, X. Z.; Deng, H. X. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew. Chem. Int. Ed. 2019, 58, 14213–14218.
Wang, C. X.; Zhang, H. L.; Luo, W. J.; Sun, T.; Xu, Y. X. Ultrathin crystalline covalent-triazine-framework nanosheets with electron donor groups for synergistically enhanced photocatalytic water splitting. Angew. Chem. Int. Ed. 2021, 60, 25381–25390.
Hu, X. L.; Zhan, Z.; Zhang, J. Q.; Hussain, I.; Tan, B. E. Immobilized covalent triazine frameworks films as effective photocatalysts for hydrogen evolution reaction. Nat. Commun. 2021, 12, 6596.
Liu, Y. B.; Wu, H.; Wang, Q. Strategies to improve the photocatalytic performance of covalent triazine frameworks. J. Mater. Chem. A 2023, 11, 21470–21497.
Liu, T. T.; Hu, X. Y.; Wang, Y. F.; Meng, L. Y.; Zhou, Y. N.; Zhang, J. X.; Chen, M.; Zhang, X. M. Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-Ⅱ photosensitizers. J. Photochem. Photobiol. B: Biol. 2017, 175, 156–162.
Jiang, L.; Gan, C. R. R.; Gao, J.; Loh, X. J. A perspective on the trends and challenges facing porphyrin-based anti-microbial materials. Small 2016, 12, 3609–3644.
Lin, G. Q.; Ding, H. M.; Chen, R. F.; Peng, Z. K.; Wang, B. S.; Wang, C. 3D porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8705–8709.
Bůžek, D.; Zelenka, J.; Ulbrich, P.; Ruml, T.; Křížová, I.; Lang, J.; Kubát, P.; Demel, J.; Kirakci, K.; Lang, K. Nanoscaled porphyrinic metal-organic frameworks: Photosensitizer delivery systems for photodynamic therapy. J. Mater. Chem. B 2017, 5, 1815–1821.
Hynek, J.; Zelenka, J.; Rathouský, J.; Kubát, P.; Ruml, T.; Demel, J.; Lang, K. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces 2018, 10, 8527–8535.
Nguyen, V. N.; Kumar, A.; Lee, M. H.; Yoon, J. Recent advances in biomedical applications of organic fluorescence materials with reduced singlet-triplet energy gaps. Coord. Chem. Rev. 2020, 425, 213545.
Luan, T. X.; Du, L. H.; Wang, J. R.; Li, K. Y.; Zhang, Q.; Li, P. Z.; Zhao, Y. L. Highly effective generation of singlet oxygen by an imidazole-linked robust photosensitizing covalent organic framework. ACS Nano 2022, 16, 21565–21575.
Zhou, L. L.; Guan, Q.; Dong, Y. B. Covalent organic frameworks: Opportunities for rational materials design in cancer therapy. Angew. Chem., Int. Ed. 2024, 63, e202314763.
Gatasheh, M. K.; Kannan, S.; Hemalatha, K.; Imrana, N. Proflavine an acridine DNA intercalating agent and strong antimicrobial possessing potential properties of carcinogen. Karbala International Journal of Modern Science 2017, 3, 272–278.
Sabolova, D.; Kristian, P.; Kozurkova, M. Proflavine/acriflavine derivatives with versatile biological activities. J. Appl. Toxicol. 2020, 40, 64–71.
Zhang, C. P.; Guo, J. N.; Zou, X. Y.; Guo, S. Y.; Guo, Y.; Shi, R. W.; Yan, F. Acridine-based covalent organic framework photosensitizer with broad-spectrum light absorption for antibacterial photocatalytic therapy. Adv. Healthcare Mater. 2021, 10, e2100775.
Agazzi, M. L.; Ballatore, M. B.; Durantini, A. M.; Durantini, E. N.; Tomé, A. C. BODIPYs in antitumoral and antimicrobial photodynamic therapy: An integrating review. J. Photochem. Photobiol. C: Photochem. Rev. 2019, 40, 21–48.
Teng, K. X.; Chen, W. K.; Niu, L. Y.; Fang, W. H.; Cui, G. L.; Yang, Q. Z. BODIPY-based photodynamic agents for exclusively generating superoxide radical over singlet oxygen. Angew. Chem., Int. Ed. 2021, 60, 19912–19920.
Cheng, H. B.; Cao, X. Q.; Zhang, S. C.; Zhang, K. Y.; Cheng, Y.; Wang, J. Q.; Zhao, J.; Zhou, L. M.; Liang, X. J.; Yoon, J. BODIPY as a multifunctional theranostic reagent in biomedicine: Self-assembly, properties, and applications. Adv. Mater. 2023, 35, e2207546.
Wang, S. S.; Gai, L. Z.; Chen, Y. C.; Ji, X. B.; Lu, H.; Guo, Z. J. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy. Chem. Soc. Rev. 2024, 53, 3976–4019.
Guan, Q.; Fu, D. D.; Li, Y. A.; Kong, X. M.; Wei, Z. Y.; Li, W. Y.; Zhang, S. J.; Dong, Y. B. BODIPY-decorated nanoscale covalent organic frameworks for photodynamic therapy. iScience 2019, 14, 180–198.
Guan, Q.; Zhou, L. L.; Lv, F. H.; Li, W. Y.; Li, Y. A.; Dong, Y. B. A Glycosylated covalent organic framework equipped with BODIPY and CaCO3 for synergistic tumor therapy. Angew. Chem., Int. Ed. 2020, 59, 18042–18047.
Yang, G. P.; Meng, X. L.; Xiao, S. J.; Zheng, Q. Q.; Tan, Q. G.; Liang, R. P.; Zhang, L.; Zhang, P.; Qiu, J. D. Construction of D-A-conjugated covalent organic frameworks with enhanced photodynamic, photothermal, and nanozymatic activities for efficient bacterial inhibition. ACS Appl. Mater. Interfaces 2022, 14, 28289–28300.
Liu, Y.; Wan, Y. T.; Zeng, Z. J.; Yan, Z. H.; Liu, Y. Nanosilver-decorated covalent organic frameworks for enhanced photodynamic, photothermal, and antibacterial properties. Mater. Chem. Phys. 2023, 307, 128158.
Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.
Zhi, D. F.; Yang, T.; O'Hagan, J.; Zhang, S. B.; Donnelly, R. F. Photothermal therapy. J. Control. Release 2020, 325, 52–71.
Ren, Y. T.; Yan, Y. Y.; Qi, H. Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Adv. Colloid Interface Sci. 2022, 308, 102753.
Chen, Y.; Gao, Y. J.; Chen, Y.; Liu, L.; Mo, A. C.; Peng, Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J. Control. Release 2020, 328, 251–262.
Zhang, Z. F.; Wang, L.; Chan, T. K. F.; Chen, Z. G.; Ip, M.; Chan, P. K. S.; Sung, J. J. Y.; Zhang, L. Micro-/nanorobots in antimicrobial applications: Recent progress, challenges, and opportunities. Adv. Healthcare Mater. 2022, 11, e2101991.
Qi, X. L.; Xiang, Y. J.; Cai, E. Y.; Ge, X. X.; Chen, X. J.; Zhang, W.; Li, Z. P.; Shen, J. L. Inorganic-organic hybrid nanomaterials for photothermal antibacterial therapy. Coord. Chem. Rev. 2023, 496, 215426.
Yuan, H. X.; Li, Z. L.; Zhao, Q.; Jia, S. C.; Wang, T.; Xu, L.; Yuan, H. T.; Li, S. L. Molecular evolution of acceptor-donor-acceptor-type conjugated oligomer nanoparticles for efficient photothermal antimicrobial therapy. Adv. Funct. Mater. 2023, 33, 2213209.
Gao, G.; Jiang, Y. W.; Jia, H. R.; Wu, F. G. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials 2019, 188, 83–95.
Huo, J. J.; Jia, Q. Y.; Huang, H.; Zhang, J.; Li, P.; Dong, X. C.; Huang, W. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem. Soc. Rev. 2021, 50, 8762–8789.
Zhang, Y. M.; Hu, X.; Shang, J.; Shao, W. H.; Jin, L. M.; Quan, C. S.; Li, J. Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 2022, 12, 5995–6020.
Wang, X. Z.; Zhang, C.; He, L. L.; Li, M. F.; Chen, P. F.; Yang, W.; Sun, P. F.; Li, D. F.; Zhang, Y. Near infrared Ⅱ excitation nanoplatform for photothermal/chemodynamic/antibiotic synergistic therapy combating bacterial biofilm infections. J. Nanobiotechnol. 2023, 21, 446.
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395.
Lin, S. M.; Wade, J. D.; Liu, S. P. De novo design of flavonoid-based mimetics of cationic antimicrobial peptides: Discovery, development, and applications. Acc. Chem. Res. 2021, 54, 104–119.
Ngambenjawong, C.; Chan, L. W.; Fleming, H. E.; Bhatia, S. N. Conditional antimicrobial peptide therapeutics. ACS Nano 2022, 16, 15779–15791.
Alfei, S.; Schito, A. M. Positively charged polymers as promising devices against multidrug resistant gram-negative bacteria: A review. Polymers (Basel) 2020, 12, 1195.
Si, Z. Y.; Zheng, W. B.; Prananty, D.; Li, J. H.; Koh, C. H.; Kang, E. T.; Pethe, K.; Chan-Park, M. B. Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chem. Sci. 2022, 13, 345–364.
Han, H.; Zhu, J.; Wu, D. Q.; Li, F. X.; Wang, X. L.; Yu, J. Y.; Qin, X. H. Inherent guanidine nanogels with durable antibacterial and bacterially antiadhesive properties. Adv. Funct. Mater. 2019, 29, 1806594.
Liang, Y.; Xia, M.; Yu, Q. H.; Li, Y. P.; Sui, Z.; Yuan, Y. H.; Hu, X. M.; Chen, Q.; Wang, N. Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Adv. Compos. Hybrid. Mater. 2022, 5, 184–194.
Yang, C.; Liu, G. F.; Chen, J. P.; Zeng, B. R.; Shen, T. X.; Qiu, D. C.; Huang, C.; Li, L.; Chen, D. F.; Chen, J. L. et al. Chitosan and polyhexamethylene guanidine dual-functionalized cotton gauze as a versatile bandage for the management of chronic wounds. Carbohydr. Polym. 2022, 282, 119130.
Yim, J. H.; Fleischman, M. S.; Rodriguez-Santiago, V.; Piehler, L. T.; Williams, A. A.; Leadore, J. L.; Pappas, D. D. Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor. ACS Appl. Mater. Interfaces 2013, 5, 11836–11843.
Ye, X. L.; Qin, X. M.; Yan, X. R.; Guo, J. K.; Huang, L. H.; Chen, D. J.; Wu, T.; Shi, Q. S.; Tan, S. Z.; Cai, X. π–π conjugations improve the long-term antibacterial properties of graphene oxide/quaternary ammonium salt nanocomposites. Chem. Eng. J. 2016, 304, 873–881.
An, L. L.; Heo, J. W.; Chen, J. S.; Kim, Y. S. Water-soluble lignin quaternary ammonium salt for electrospun morphology-controllable antibacterial polyvinyl alcohol/ lignin quaternary ammonium salt nanofibers. J. Clean. Prod. 2022, 368, 133219.
Fu, Y. C.; Jiang, J. X.; Zhang, Q. H.; Zhan, X. L.; Chen, F. Q. Robust liquid-repellent coatings based on polymer nanoparticles with excellent self-cleaning and antibacterial performances. J. Mater. Chem. A 2017, 5, 275–284.
Jia, R. N.; Tian, W. G.; Bai, H. T.; Zhang, J. M.; Wang, S.; Zhang, J. Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers. Adv. Healthcare Mater. 2019, 8, e1801591.
Xu, C.; Jiang, J. G.; Oguzlu, H.; Zheng, Y.; Jiang, F. Antifouling, antibacterial and non-cytotoxic transparent cellulose membrane with grafted zwitterion and quaternary ammonium copolymers. Carbohydr. Polym. 2020, 250, 116960.
Mal, A.; Vijayakumar, S.; Mishra, R. K.; Jacob, J.; Pillai, R. S.; Dileep Kumar, B. S.; Ajayaghosh, A. Supramolecular surface charge regulation in ionic covalent organic nanosheets: Reversible exfoliation and controlled bacterial growth. Angew. Chem., Int. Ed. 2020, 59, 8713–8719.
Li, Y. T.; Wang, L.; Liu, H.; Pan, Y.; Li, C. N.; Xie, Z. G.; Jing, X. B. Ionic covalent-organic framework nanozyme as effective cascade catalyst against bacterial wound infection. Small 2021, 17, e2100756.
Luo, H. T.; Ji, W. G.; Guo, W. X.; Chen, P. L.; Zhang, Z. F.; Xu, X.; Yue, B. D.; Tan, W.; Zhou, B. L. A photoactive dual-cationic covalent organic framework encapsulated sodium nitroprusside as controllable no-releasing material for joint cation/photothermal/NO antibacterial therapy. Micropor. Mesopor. Mat. 2022, 346, 112281.
Li, C.; Gao, F. C.; Tong, Y.; Chang, F.; Han, H. C.; Liu, C. R.; Xu, M. C.; Li, H.; Zhou, J.; Li, X. Y. et al. Nir-Ⅱ window triple-mode antibacterial nanoplatform: Cationic copper sulfide nanoparticles combined vancomycin for synergistic bacteria eradication. J. Colloid Interface Sci. 2022, 628, 595–604.
Zhang, H.; Li, Q. S.; Qi, X. Y.; Li, Y.; Ma, H. Y.; Grinholc, M.; Nakonieczna, J.; Yu, B. R.; Wang, X.; Zhang, L. Iron-blocking antibacterial therapy with cationic heme-mimetic gallium porphyrin photosensitizer for combating antibiotic resistance and enhancing photodynamic antibacterial activity. Chem. Eng. J. 2023, 451, 138261.
Suraj, R.; Radhamani, S.; Meehan-Andrews, T.; Bradley, C. Role of a novel benzoxazine derivative in the chemosensitization of colon cancer. Apoptosis 2017, 22, 988–1000.
Yadav, N.; Monisha, M.; Niranjan, R.; Dubey, A.; Patil, S.; Priyadarshini, R.; Lochab, B. Antibacterial performance of fully biobased chitosan-grafted-polybenzoxazine films: Elaboration and properties of released material. Carbohydr. Polym. 2021, 254, 117296.
Chatterjee, I.; Ali, K.; Panda, G. A synthetic overview of benzoxazines and benzoxazepines as anticancer agents. ChemMedChem 2023, 18, e202200617.
Ma, Q.; Liu, X.; Wang, H.; Zhuang, Q.; Qian, J. Construction of novel benzoxazine-linked covalent organic framework with antimicrobial activity via postsynthetic cyclization. Mater. Today Chem. 2022, 23, 100707.
Abdel-Meguid, S. S.; Zhao, B. G.; Murthy, K. H. M.; Winborne, E.; Choi, J. K.; DesJarlais, R. L.; Minnich, M. D.; Culp, J. S.; Debouck, C.; Tomaszek, T. A. Jr. et al. Inhibition of human immunodeficiency virus-1 protease by a C2-symmetric phosphinate. Synthesis and crystallographic analysis . Biochemistry 1993, 32, 7972–7980.
Xu, Y. S.; Yan, K.; Song, B. A.; Xu, G. F.; Yang, S.; Xue, W.; Hu, D. Y.; Lu, P.; Ouyang, G. P.; Jin, L. H. et al. Synthesis and antiviral bioactivities of α-aminophosphonates containing alkoxyethyl moieties. Molecules 2006, 11, 666–676.
Cherenok, S.; Vovk, A.; Muravyova, I.; Shivanyuk, A.; Kukhar, V.; Lipkowski, J.; Kalchenko, V. Calix[4]arene α-aminophosphonic acids: Asymmetric synthesis and enantioselective inhibition of an alkaline phosphatase. Org. Lett. 2006, 8, 549–552.
Wang, Q. M.; Zhu, M. L.; Zhu, R. T.; Lu, L. P.; Yuan, C. X.; Xing, S.; Fu, X. Q.; Mei, Y. H.; Hang, Q. W. Exploration of a-aminophosphonate N-derivatives as novel, potent and selective inhibitors of protein tyrosine phosphatases. Eur. J. Med. Chem. 2012, 49, 354–364.
Bazine, I.; Bendjedid, S.; Boukhari, A. Potential antibacterial and antifungal activities of novel sulfamidophosphonate derivatives bearing the quinoline or quinolone moiety. Arch. Pharm. (Weinheim) 2021, 354, e2000291.
Wu, W. X.; Li, F.; Yao, B. J.; Ding, L. G.; Kan, J. L.; Liu, F.; Zhao, G. Y.; Wang, S.; Dong, Y. B. Synthesis of covalent organic frameworks via Kabachnik-fields reaction for water treatment. J. Hazard. Mater. 2022, 433, 128831.
Zhang, G. Y.; Li, X. L.; Liao, Q. B.; Liu, Y. F.; Xi, K.; Huang, W. Y.; Jia, X. D. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat. Commun. 2018, 9, 2785.
Ge, L.; Qiao, C. Y.; Tang, Y. K.; Zhang, X. K.; Jiang, X. Q. Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery. Nano Lett. 2021, 21, 3218–3224.
He, L. L.; Wang, L.; He, Z.; Pang, C. H.; Tang, B. C.; Wu, A. G.; Li, J. Strategies for utilizing covalent organic frameworks as host materials for the integration and delivery of bioactives. Mater. Horiz. 2024, 11, 1126–1151.
Fang, Q. R.; Wang, J. H.; Gu, S.; Kaspar, R. B.; Zhuang, Z. B.; Zheng, J.; Guo, H. X.; Qiu, S. L.; Yan, Y. S. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J.Am. Chem. Soc. 2015, 137, 8352–8355.
Wu, Y. D.; Cui, W. R.; Zhang, C. R.; Liang, R. P.; Qiu, J. D. Regenerable, anti-biofouling covalent organic frameworks for monitoring and extraction of uranium from seawater. Environ. Chem. Lett. 2021, 19, 1847–1856.
Li, C. C.; Chen, C. X.; Zhao, J. B.; Tan, M.; Zhai, S.; Wei, Y. C.; Wang, L.; Dai, T. Electrospun fibrous membrane containing a cyclodextrin covalent organic framework with antibacterial properties for accelerating wound healing. ACS Biomater. Sci. Eng. 2021, 7, 3898–3907.
Salehi, A.; Behpour, M.; Afzali, D. Investigation into the antibacterial activity of covalent organic frameworks as a delivery system of trimethoprim against Escherichia coli and Staphylococcus aureus. Polym. Bull. 2023, 80, 1447–1461.
Namazi, H.; Pooresmaeil, M.; Salehi, R. Magnetic dialdehyde starch as green support for the growth of hyaluronic acid terminated covalent organic framework: A pH-controlled daunorubicin delivery system with inherent antibacterial feature. Eur. Polym. J. 2023, 198, 112428.
Ji, W. Y.; Zhang, P.; Feng, G. Y.; Cheng, Y. Z.; Wang, T. X.; Yuan, D. Q.; Cha, R. T.; Ding, X. S.; Lei, S. B.; Han, B. H. Synthesis of a covalent organic framework with hetero-environmental pores and its medicine co-delivery application. Nat. Commun. 2023, 14, 6049.
Qiao, S.; Duan, W. J.; Yu, J. Y.; Zheng, Y. L.; Yan, D.; Jin, F. Z.; Zhang, S. N.; Zhang, Z. J.; Chen, H. X.; Huang, H. et al. Fabrication of biomolecule-covalent-organic-framework composites as responsive platforms for smart regulation of fermentation application. ACS Appl. Mater. Interfaces 2021, 13, 32058–32066.
Shen, C. Y.; Ma, Y. T.; Wu, D.; Liu, P. W.; He, Y.; Chen, K. S. Preparation of covalent organic framework-based nanofibrous films with temperature-responsive release of thymol for active food packaging. Food Chem. 2023, 410, 135460.
Zhao, Z. P.; Feng, H. M.; Qin, D.; Li, W.; Wang, W.; Chen, S. G. pH-responsive intelligent antibacterial coatings based on 2D-COF for controlled release of capsaicin. ACS Appl. Polym. Mater. 2023, 5, 2124–2135.
Zhang, T.; Wu, L. L.; Song, Y. R.; Li, X. J.; Niu, X. X.; Sun, Y. J.; Liu, J.; Feng, G. Y.; Lei, S. B. Functional covalent organic framework (COF) nanoparticles for biomimic mineralization and bacteria inhabitation. ACS Appl. Mater. Interfaces 2023, 15, 52305–52312.
Sun, B. H.; Ye, Z. Q.; Zhang, M.; Song, Q. X.; Chu, X. H.; Gao, S. R.; Zhang, Q. C.; Jiang, C.; Zhou, N. L.; Yao, C. et al. Light-activated biodegradable covalent organic framework-integrated heterojunction for photodynamic, photothermal, and gaseous therapy of chronic wound infection. ACS Appl. Mater. Interfaces 2021, 13, 42396–42410.
Chaudhary, A. S. A review of global initiatives to fight antibiotic resistance and recent antibiotics׳ discovery. Acta Pharm Sin B 2016, 6, 552–556.
Khosrow-Khavar, F.; Ganjizadeh-Zavareh, S.; Etminan, M. Multiple classes of antibiotic use in infancy and allergic disease in childhood. JAMA Pediatr. 2020, 174, 1002–1003.
Liu, J. F.; Gefen, O.; Ronin, I.; Bar-Meir, M.; Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 2020, 367, 200–204.
Chakrabarti, S.; Chattopadhyay, P.; Islam, J.; Ray, S.; Raju, P. S.; Mazumder, B. Aspects of nanomaterials in wound healing. Curr. Drug Deliv. 2019, 16, 26–41.
Zhang, Q. C.; Zhu, J.; Jin, S. S.; Zheng, Y. S.; Gao, W. H.; Wu, D. Q.; Yu, J. Y.; Dai, Z. J. Cellulose-nanofibril-reinforced hydrogels with pH sensitivity and mechanical stability for wound healing. Mater. Lett. 2022, 323, 132596.
Zhou, C.; Sheng, C. J.; Gao, L. L.; Guo, J.; Li, P.; Liu, B. Engineering poly(ionic liquid) semi-IPN hydrogels with fast antibacterial and anti-inflammatory properties for wound healing. Chem. Eng. J. 2021, 413, 127429.
Sharma, S.; Madhyastha, H.; Kirwale, S. S.; Sakai, K.; Katakia, Y. T.; Majumder, S.; Roy, A. Dual antibacterial and anti-inflammatory efficacy of a chitosan-chondroitin sulfate-based in-situ forming wound dressing. Carbohydr. Polym. 2022, 298, 120126.
Shi, S. G.; Jiang, Y. J.; Yu, Y. X.; Liang, M. M.; Bai, Q.; Wang, L. N.; Yang, D. Q.; Sui, N.; Zhu, Z. L. Piezo-augmented and photocatalytic nanozyme integrated microneedles for antibacterial and anti-inflammatory combination therapy. Adv. Funct. Mater. 2023, 33, 2210850.
Ma, P. C.; Yang, C. Y.; Li, C. L.; Hu, P. L.; Yang, F.; Lu, J. J.; Huang, Y. Y.; Wu, H.; Wu, Q.; Pan, Y. W. et al. Blow-spun Si3N4-incorporated nanofibrous dressing with antibacterial, anti-inflammatory, and angiogenic activities for chronic wound treatment. Adv. Fiber Mater. 2024, 6, 543–560.
Dai, C. S.; Lin, J. H.; Li, H.; Shen, Z. Q.; Wang, Y.; Velkov, T.; Shen, J. Z. The natural product curcumin as an antibacterial agent: Current achievements and problems. Antioxidants (Basel) 2022, 11, 459.
Yao, H.; Wu, M.; Lin, L. W.; Wu, Z. L.; Bae, M.; Park, S.; Wang, S. L.; Zhang, W.; Gao, J. F.; Wang, D. et al. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: Status and trends. Mater. Today Bio. 2022, 16, 100429.
Qi, M. L.; Ren, X.; Li, W.; Sun, Y.; Sun, X. L.; Li, C. Y.; Yu, S. Y.; Xu, L.; Zhou, Y. M.; Song, S. Y. et al. NIR responsive nitric oxide nanogenerator for enhanced biofilm eradication and inflammation immunotherapy against periodontal diseases. Nano Today 2022, 43, 101447.
Wang, T. Y.; Zhu, X. Y.; Wu, F. G. Antibacterial gas therapy: Strategies, advances, and prospects. Bioact. Mater. 2023, 23, 129–155.
Yu, Q. N.; Xu, X. L.; Wang, C. Z.; Ma, Y. J.; Hui, D.; Zhou, Z. W. Remarkably improvement in antibacterial activity by synergistic effect in N-Cu@T-ZnO nanocomposites. Compos. Part B: Eng. 2017, 110, 32–38.
Zhang, D. D.; Liu, H. M.; Shu, X. L.; Feng, J.; Yang, P.; Dong, P.; Xie, X. B.; Shi, Q. S. Nanocopper-loaded black phosphorus nanocomposites for efficient synergistic antibacterial application. J. Hazard. Mater. 2020, 393, 122317.
Xie, X. H.; Wang, R.; Zhang, X. X.; Ren, Y. R.; Du, T.; Ni, Y. S.; Yan, H. L.; Zhang, L.; Sun, J.; Zhang, W. T. et al. A photothermal and self-induced Fenton dual-modal antibacterial platform for synergistic enhanced bacterial elimination. Appl. Catal. B: Environ. 2021, 295, 120315.
Cheng, S.; Qi, M. L.; Li, W.; Sun, W. Y.; Li, M. Q.; Lin, J. Y.; Bai, X.; Sun, Y.; Dong, B.; Wang, L. Dual-responsive nanocomposites for synergistic antibacterial therapies facilitating bacteria-infected wound healing. Adv. Healthcare Mater. 2023, 12, e2202652.
He, Y. P.; Wang, X. Z.; Zhang, C.; Sun, J. K.; Xu, J. Z.; Li, D. F. Near-infrared light-mediated cyclodextrin metal-organic frameworks for synergistic antibacterial and anti-biofilm therapies. Small 2023, 19, e2300199.
Wang, Y. D.; Qi, W. X.; Mao, Z. H.; Wang, J.; Zhao, R. C.; Chen, H. X. rPDAs doped antibacterial MOF-hydrogel: Bio-inspired synergistic whole-process wound healing. Mater. Today Nano 2023, 23, 100363.
Qiu, X. C.; Zhuang, L.; Yuan, J.; Wang, H. Z.; Dong, X. Y.; He, S.; Guan, S. Y.; Chang, Z. Y.; Bao, P. T. Constructing multifunctional Cu single-atom nanozyme for synergistic nanocatalytic therapy-mediated multidrug-resistant bacteria infected wound healing. J. Colloid Interface Sci. 2023, 652, 1712–1725.
Wang, W.; Liu, C.; Zhang, M. T.; Zhang, C. Y.; Cao, L.; Zhang, C. F.; Liu, T. F.; Kong, D. B.; Li, W.; Chen, S. G. In situ synthesis of 2D/2D MXene-COF heterostructure anchored with Ag nanoparticles for enhancing schottky photocatalytic antibacterial efficiency under visible light. J. Colloid Interface Sci. 2022, 608, 735–748.
Ding, L. G.; Wang, S.; Yao, B. J.; Wu, W. X.; Kan, J. L.; Liu, Y. Y.; Wu, J. Q.; Dong, Y. B. Covalent organic framework based multifunctional self-sanitizing face masks. J. Mater. Chem. A 2022, 10, 3346–3358.
Dai, X. X.; Li, S.; Li, S. H.; Ke, K. Q.; Pang, J.; Wu, C. H.; Yan, Z. M. High antibacterial activity of chitosan films with covalent organic frameworks immobilized silver nanoparticles. Int. J. Biol. Macromol. 2022, 202, 407–417.
Wang, X. Y.; Sun, B. H.; Ye, Z. Q.; Zhang, W. J.; Xu, W.; Gao, S. R.; Zhou, N. L.; Wu, F.; Shen, J. Enzyme-responsive COF-based thiol-targeting nanoinhibitor for curing bacterial infections. ACS Appl. Mater. Interfaces 2022, 14, 38483–38496.
Zhang, H. A.; Peng, R.; Luo, Y. F.; Cui, Q. L.; Gong, F.; Li, L. D. In situ synthesis of gold nanoclusters in covalent organic frameworks with enhanced photodynamic properties and antibacterial performance. ACS Appl. Bio Mater. 2022, 5, 3115–3125.
Khoshkholgh, Z.; Sohrabnezhad, S. Melamine-based covalent organic frameworks intercalated montmorillonite for photocatalytic and antibacterial applications. J. Mol. Struct. 2023, 1294, 136399.
Liu, C.; Wang, W.; Zhang, M. T.; Zhang, C. Y.; Ma, C. C.; Cao, L.; Kong, D. B.; Feng, H. M.; Li, W.; Chen, S. G. Synthesis of MXene/COF/Cu2O heterojunction for photocatalytic bactericidal activity and mechanism evaluation. Chem. Eng. J. 2022, 430, 132663.
Liang, J. R.; Li, W.; Chen, J. Y.; Huang, X. M.; Liu, Y. L.; Zhang, X. J.; Shu, W.; Lei, B. F.; Zhang, H. R. Carbon dots as an electron extractant for enhanced photocatalytic antibacterial activity of covalent organic frameworks. J. Mater. Chem. A 2022, 10, 23384–23394.
Lin, X. J.; Zhang, M.; Lv, W. X.; Li, J.; Huang, R.; Wang, Y. Engineering carbon nanotube-based photoactive COF to synergistically arm a multifunctional antibacterial hydrogel. Adv. Funct. Mater. 2024, 34, 2310845.
Li, Y. T.; Liu, L. Q.; Meng, T.; Wang, L.; Xie, Z. G. Structural engineering of ionic MOF@COF heterointerface for exciton-boosting sunlight-driven photocatalytic filter. ACS Nano 2023, 17, 2932–2942.
Vimbela, G. V.; Ngo, S. M.; Fraze, C.; Yang, L.; Stout, D. A. Antibacterial properties and toxicity from metallic nanomaterials. Int. J. Nanomed. 2017, 12, 3941–3965.
Chaudhary, R. G.; Bhusari, G. S.; Tiple, A. D.; Rai, A. R.; Somkuvar, S. R.; Potbhare, A. K.; Lambat, T. L.; Ingle, P. P.; Abdala, A. A. Metal/metal oxide nanoparticles: Toxicity, applications, and future prospects. Curr. Pharm. Des. 2019, 25, 4013–4029.
Tortella, G. R.; Rubilar, O.; Durán, N.; Diez, M. C.; Martínez, M.; Parada, J.; Seabra, A. B. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 2020, 390, 121974.
Tang, S. H.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthcare Mater. 2018, 7, e1701503.
Xie, X. L.; Sun, T. C.; Xue, J. Z.; Miao, Z. H.; Yan, X.; Fang, W. W.; Li, Q.; Tang, R. P.; Lu, Y.; Tang, L. X. et al. Ag nanoparticles cluster with pH-triggered reassembly in targeting antimicrobial applications. Adv. Funct. Mater. 2020, 30, 2000511.
Tan, S. R.; Wu, X.; Xing, Y. Q.; Lilak, S.; Wu, M.; Zhao, J. X. Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids Surf. B: Biointerfaces 2020, 185, 110616.
Nie, X. L.; Wu, S. L.; Liao, S. Q.; Chen, J. F.; Huang, F. L.; Li, W.; Wang, Q. Q.; Wei, Q. F. Light-driven self-disinfecting textiles functionalized by PCN-224 and Ag nanoparticles. J. Hazard. Mater. 2021, 416, 125786.
Mao, K. L.; Zhu, Y.; Rong, J.; Qiu, F. X.; Chen, H. Y.; Xu, J. C.; Yang, D. Y.; Zhang, T.; Zhong, L. Rugby-ball like Ag modified zirconium porphyrin metal-organic frameworks nanohybrid for antimicrobial activity: Synergistic effect for significantly enhancing photoactivation capacity. Colloids Surf. A: Physicochem. Eng. Aspects 2021, 611, 125888.
Zhang, C. L.; Li, C.; Liu, Y. L.; Zhang, J. P.; Bao, C. C.; Liang, S. J.; Wang, Q.; Yang, Y.; Fu, H. L.; Wang, K. et al. Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv. Funct. Mater. 2015, 25, 1314–1325.
Liu, C. P.; Wu, T. H.; Liu, C. Y.; Chen, K. C.; Chen, Y. X.; Chen, G. S.; Lin, S. Y. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 2017, 13, 1700278.
Han, R. C.; Zhao, M.; Wang, Z. W.; Liu, H. L.; Zhu, S. C.; Huang, L.; Wang, Y.; Wang, L. J.; Hong, Y. K.; Sha, Y. L. et al. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 2020, 14, 9532–9544.
Zhu, H. G.; Wang, S. S.; Wang, Y. R.; Song, C. W.; Yao, Q. F.; Yuan, X.; Xie, J. P. Gold nanocluster with AIE: A novel photodynamic antibacterial and deodorant molecule. Biomaterials 2022, 288, 121695.
Qian, Y. Y.; Li, D. D.; Han, Y. L.; Jiang, H. L. Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 20763–20771.
Qian, Y. Y.; Han, Y. L.; Zhang, X. Y.; Yang, G.; Zhang, G. Z.; Jiang, H. L. Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis. Nat. Commun. 2023, 14, 3083.
Yang, H. J.; Lu, Z.; Yin, X. Y.; Wu, S. J.; Hou, L. X. Influence laws of air gap structure manipulation of covalent organic frameworks on dielectric properties and exciton effects for photopolymerization. Chem. Sci. 2023, 14, 8095–8102.
Peng, X. X.; Ma, J.; Zhou, Z. X.; Yang, H.; Chen, J. J.; Chen, R.; Wu, K. Q.; Xi, G. C.; Liu, S. Q.; Shen, Y. F. et al. Molecular assembly of carbon nitride-based composite membranes for photocatalytic sterilization and wound healing. Chem. Sci. 2023, 14, 4319–4327.
Xu, J.; Che, H. N.; Tang, C. M.; Liu, B.; Ao, Y. H. Tandem fields facilitating directional carrier migration in van der Waals heterojunction for efficient overall piezo-synthesis of H2O2. Adv. Mater. 2024, 36, 2404539.
Ma, J.; Peng, C.; Peng, X. X.; Liang, S. C.; Zhou, Z. X.; Wu, K. Q.; Chen, R.; Liu, S. Q.; Shen, Y. F.; Ma, H. B. et al. H2O2 photosynthesis from H2O and O2 under weak light by carbon nitrides with the piezoelectric effect. J. Am. Chem. Soc. 2024, 146, 21147–21159.
Cai, T.; Wang, L. L.; Liu, Y. T.; Zhang, S. Q.; Dong, W. Y.; Chen, H.; Yi, X. Y.; Yuan, J. L.; Xia, X. N.; Liu, C. B. et al. Ag3PO4/Ti3C2 MXene interface materials as a schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl. Catal. B: Environ. 2018, 239, 545–554.
Cao, B. Q.; Wan, S. P.; Wang, Y. N.; Guo, H. W.; Ou, M.; Zhong, Q. Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/Zn X Cd1- X S photocatalyst. J. Colloid Interface Sci. 2022, 605, 311–319.
Zhou, F. F.; Wu, S. N.; Song, S.; Chen, W. R.; Resasco, D. E.; Xing, D. Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials 2012, 33, 3235–3242.
Marangon, I.; Ménard-Moyon, C.; Silva, A. K. A.; Bianco, A.; Luciani, N.; Gazeau, F. Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon 2016, 97, 110–123.
Zhang, M.; Wang, W. T.; Wu, F.; Yuan, P.; Chi, C.; Zhou, N. L. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 2017, 123, 70–83.
Zhao, Y. N.; Zhao, T. Y.; Cao, Y. N.; Sun, J.; Zhou, Q.; Chen, H. Y.; Guo, S. T.; Wang, Y. F.; Zhen, Y. H.; Liang, X. J. et al. Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy. ACS Nano 2021, 15, 6517–6529.
He, S. Y.; Huang, J. Q.; Zhang, Q.; Zhao, W.; Xu, Z. A.; Zhang, W. Bamboo-like nanozyme based on nitrogen-doped Carbon nanotubes encapsulating cobalt nanoparticles for wound antibacterial applications. Adv. Funct. Mater. 2021, 31, 2105198.
Jain, S.; Dongave, S. M.; Date, T.; Kushwah, V.; Mahajan, R. R.; Pujara, N.; Kumeria, T.; Popat, A. Succinylated β-lactoglobuline-functionalized multiwalled carbon nanotubes with improved colloidal stability and biocompatibility. ACS Biomater. Sci. Eng. 2019, 5, 3361–3372.
Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, e2000165.
Polash, S. A.; Khare, T.; Kumar, V.; Shukla, R. Prospects of exploring the metal-organic framework for combating antimicrobial resistance. ACS Appl. Bio Mater. 2021, 4, 8060–8079.
Zhao, W. L.; Deng, J. Q.; Ren, Y.; Xie, L. Y.; Li, W. R.; Wang, Q.; Li, S. Q.; Liu, S. J. Antibacterial application and toxicity of metal-organic frameworks. Nanotoxicology 2021, 15, 311–330.
Zhang, X. D.; Chen, X. K.; Zhao, Y. L. Nanozymes: Versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 2022, 14, 95.
Iravani, S.; Varma, R. S. MXene-based composites as nanozymes in biomedicine: A perspective. Nano-Micro Lett. 2022, 14, 213.
Yin, W. Y.; Yu, J.; Lv, F. T.; Yan, L.; Zheng, L. R.; Gu, Z. J.; Zhao, Y. L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 2016, 10, 11000–11011.
Mei, L. Q.; Zhu, S.; Liu, Y. P.; Yin, W. Y.; Gu, Z. J.; Zhao, Y. L. An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 2021, 418, 129431.
Wei, F.; Cui, X. Y.; Wang, Z.; Dong, C. C.; Li, J. D.; Han, X. J. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem. Eng. J. 2021, 408, 127240.
Song, N. N.; Yu, Y.; Zhang, Y. N.; Wang, Z. D.; Guo, Z. J.; Zhang, J. L.; Zhang, C. B.; Liang, M. M. Bioinspired hierarchical self-assembled nanozyme for efficient antibacterial treatment. Adv. Mater. 2024, 36, e2210455.
Jin, P.; Niu, X. Y.; Zhang, F.; Dong, K.; Dai, H. X.; Zhang, H. G.; Wang, W. F.; Chen, H. L.; Chen, X. G. Stable and reusable light-responsive reduced covalent organic framework (COF-300-Ar) as a oxidase-mimicking catalyst for GSH detection in cell lysate. ACS Appl. Mater. Interfaces 2020, 12, 20414–20422.
Zhou, L. L.; Guan, Q.; Zhou, W.; Kan, J. L.; Teng, K.; Hu, M.; Dong, Y. B. A multifunctional covalent organic framework nanozyme for promoting ferroptotic radiotherapy against esophageal cancer. ACS Nano 2023, 17, 20445–20461.
Wan, X. Y.; Ge, Y. L.; Zhang, J.; Pan, W.; Li, N.; Tang, B. A covalent organic framework derived N-doped carbon nanozyme as the all-rounder for targeted catalytic therapy and NIR-Ⅱ photothermal therapy of cancer. ACS Appl. Mater. Interfaces 2023, 15, 44763–44772.
Wang, T.; Bai, Q.; Zhu, Z. L.; Xiao, H. L.; Jiang, F. Y.; Du, F. L.; Yu, W. W.; Liu, M. H.; Sui, N. Graphdiyne-supported palladium-iron nanosheets: A dual-functional peroxidase mimetic nanozyme for glutathione detection and antibacterial application. Chem. Eng. J. 2021, 413, 127537.
Zhao, S. F.; Li, H. H.; Liu, R. Y.; Tao, N.; Deng, L.; Xu, Q. Q.; Hou, J. N.; Sheng, J. P.; Zheng, J.; Wang, L. Q. et al. Nitrogen-centered lactate oxidase nanozyme for tumor lactate modulation and microenvironment remodeling. J. Am. Chem. Soc. 2023, 145, 10322–10332.
Krishna Kumar, A. S.; Tseng, W. B.; Arputharaj, E.; Huang, P. J.; Tseng, W. L.; Bajda, T. Covalent organic framework nanosheets as an enhancer for light-responsive oxidase-like nanozymes: Multifunctional applications in colorimetric sensing, antibiotic degradation, and antibacterial agents. ACS Sustain. Chem. Eng. 2023, 11, 6956–6969.
He, C. N.; Feng, P. P.; Hao, M. M.; Tang, Y.; Wu, X.; Cui, W. G.; Ma, J. Y.; Ke, C. H. Nanomaterials in antibacterial photodynamic therapy and antibacterial sonodynamic therapy. Adv. Funct. Mater. 2024, 34, 2402588.
239
Views
31
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).