Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photothermal CO2 hydrogenation is a promising route to produce methanol as a sustainable liquid solar fuel. However, most existing catalysts require a combination of solar irradiation and additional heat input to achieve a satisfactory reaction rate. For the few that can be driven solely by light, their reaction rates are one order of magnitude lower. We develop a photothermal catalyst with multilevel interfaces that achieves improved methanol production from photothermal CO2 hydrogenation without external heat. The catalyst features a layered structure comprising Cu/ZnO/Al2O3 (CZA) covered by oxidized carbon black (oCB), where the oCB/CZA interface promotes efficient heat generation and transfer, and the Cu/oxide interface contributes to high catalytic activity. Under a mild pressure of 8 bar, our oCB/CZA catalyst shows a methanol selectivity of 64.7% with a superior production rate of 4.91 mmol·gcza−1·h−1, at least one order of magnitude higher than other photothermal catalysts solely driven by light. This work demonstrates a photothermal catalyst design strategy for liquid solar fuel production.
Tountas, A. A.; Peng, X. Y.; Tavasoli, A. V.; Duchesne, P. N.; Dingle, T. L.; Dong, Y. C.; Hurtado, L.; Mohan, A.; Sun, W.; Ulmer, U. et al. Towards solar methanol: Past, present, and future. Adv. Sci. 2019, 6, 1801903.
Zhang, Z. S.; Ding, X.; Yang, X. G.; Tu, W. G.; Wang, L.; Zou, Z. G. Shedding light on CO2: Catalytic synthesis of solar methanol. EcoMat 2021, 3, e12078.
Sheldon, D. Methanol production—A technical history. Johnson Matthey Technol. Rev. 2017, 61, 172–182.
Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong, Y. C. et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018, 2, 1369–1381.
Wu, D. D.; Deng, K. X.; Hu, B.; Lu, Q. Y.; Liu, G. L.; Hong, X. L. Plasmon-assisted photothermal catalysis of low-pressure CO2 hydrogenation to methanol over Pd/ZnO catalyst. ChemCatChem 2019, 11, 1598–1601.
Xie, B. Q.; Wong, R. J.; Tan, T. H.; Higham, M.; Gibson, E. K.; Decarolis, D.; Callison, J.; Aguey-Zinsou, K. F.; Bowker, M.; Catlow, C. R. A. et al. Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nat. Commun. 2020, 11, 1615.
Yan, T. J.; Li, N.; Wang, L. L.; Liu, Q.; Ali, F. M.; Wang, L.; Xu, Y. F.; Liang, Y.; Dai, Y.; Huang, B. B. et al. How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst. Energy Environ. Sci. 2020, 13, 3054–3063.
Xie, B. Q.; Kumar, P.; Tan, T. H.; Esmailpour, A. A.; Aguey-Zinsou, K. F.; Scott, J.; Amal, R. Doping-mediated metal–support interaction promotion toward light-assisted methanol production over Cu/ZnO/Al2O3. ACS Catal. 2021, 11, 5818–5828.
Ling, L. L.; Yang, W. J.; Yan, P.; Wang, M.; Jiang, H. L. Light-assisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in close proximity. Angew. Chem., Int. Ed. 2022, 61, e202116396.
Xie, B. Q.; Tan, T. H.; Kalantar-Zadeh, K.; Zheng, J. W.; Kumar, P.; Jiang, J. J.; Zhou, S. J.; Scott, J.; Amal, R. Promoting low-temperature methanol production over mixed oxide supported Cu catalysts: Coupling ceria-promotion and photo-activation. Appl. Catal. B: Environ. 2022, 315, 121599.
Zhang, Z. S.; Mao, C. L.; Meira, D. M.; Duchesne, P. N.; Tountas, A. A.; Li, Z.; Qiu, C. Y.; Tang, S. L.; Song, R.; Ding, X. et al. New black indium oxide-tandem photothermal CO2-H2 methanol selective catalyst. Nat. Commun. 2022, 13, 1512.
Chen, J. M.; Wang, Y. J.; Wang, F. L.; Li, Y. W. Photo-induced switching of CO2 hydrogenation pathway towards CH3OH production over Pt@UiO-66-NH2(Co). Angew. Chem., Int. Ed. 2023, 62, e202218115.
Jiang, Z. Y.; Yuan, Z. M.; Duchesne, P. N.; Sun, W.; Lyu, X.; Miao, W. K.; Viasus Pérez, C. J.; Xu, Y. F.; Yang, D. R.; Huang, B. B. et al. A living photocatalyst derived from CaCu3Ti4O12 for CO2 hydrogenation to methanol at atmospheric pressure. Chem Catal. 2023, 3, 100507.
Lu, Z.; Xu, Y. F.; Zhang, Z. S.; Sun, J. C.; Ding, X.; Sun, W.; Tu, W. G.; Zhou, Y. F.; Yao, Y.; Ozin, G. A. et al. Wettability engineering of solar methanol synthesis. J. Am. Chem. Soc. 2023, 145, 26052–26060.
Xu, Y. F.; Tountas, A. A.; Song, R.; Ye, J.; Wei, J. H.; Ji, S. F.; Zhao, L.; Zhou, W. Z.; Chen, J. H.; Zhao, G. S. et al. Equilibrium photo-thermodynamics enables a sustainable methanol synthesis. Joule 2023, 7, 738–752.
Deng, B. W.; Song, H.; Wang, Q.; Hong, J. N.; Song, S.; Zhang, Y. W.; Peng, K.; Zhang, H. W.; Kako, T.; Ye, J. H. Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure. Appl. Catal. B: Environ. 2023, 327, 122471.
Yan, T. J.; Li, N.; Wang, L. L.; Ran, W. G.; Duchesne, P. N.; Wan, L. L.; Nguyen, N. T.; Wang, L.; Xia, M. K.; Ozin, G. A. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nat. Commun. 2020, 11, 6095.
Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.
Pan, W. Y.; Wei, Z. H.; Su, Y. H.; Lian, Y. B.; Zheng, Z. Y.; Yuan, H. H.; Qin, Y. Z.; Xie, X. L.; Bai, Q. Q.; Jiao, Z. Y. et al. Hydroxylated metal-organic-layer nanocages anchoring single atomic cobalt sites for robust photocatalytic CO2 reduction. Nano Res. 2024, 17, 2410–2419.
Wang, H. M.; Fu, S. T.; Shang, B.; Jeon, S.; Zhong, Y. R.; Harmon, N. J.; Choi, C.; Stach, E. A.; Wang, H. L. Solar-driven CO2 conversion via optimized photothermal catalysis in a lotus pod structure. Angew. Chem., Int. Ed. 2023, 62, e202305251.
Kung, H. H. Deactivation of methanol synthesis catalysts - a review. Catal. Today 1992, 11, 443–453.
Du, S. C.; Tang, W. X.; Lu, X. X.; Wang, S. B.; Guo, Y. B.; Gao, P. X. Cu-decorated ZnO nanorod array integrated structured catalysts for low-pressure CO2 hydrogenation to methanol. Adv. Mater. Interfaces 2018, 5, 1700730.
Kamsuwan, T.; Guntida, A.; Praserthdam, P.; Jongsomjit, B. Differences in deterioration behaviors of Cu/ZnO/Al2O3 catalysts with different Cu contents toward hydrogenation of CO and CO2. ACS Omega 2022, 7, 25783–25797.
Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.
Baltes, C.; Vukojevic, S.; Schuth, F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J. Catal. 2008, 258, 334–344.
Xin, Y.; Yu, K. F.; Zhang, L. T.; Yang, Y. R.; Yuan, H. B.; Li, H. L.; Wang, L. B.; Zeng, J. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 2021, 33, 2008145.
Davda, R. R.; Shabaker, J. W.; Huber, G. W.; Cortright, R. D.; Dumesic, J. A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl. Catal. B: Environ. 2005, 56, 171–186.
Kipnis, M.; Volnina, E.; Belostotsky, I.; Galkin, R.; Zhilyaeva, N.; Levin, I.; Kottsov, S.; Ezhov, A. Effective Cu/ZnO/Al2O3 catalyst for methanol production: Synthesis, activation, catalytic performance, and regeneration. Catal. Res. 2022, 2, 27.
Liang, B. L.; Ma, J. G.; Su, X.; Yang, C. Y.; Duan, H. M.; Zhou, H. W.; Deng, S. L.; Li, L.; Huang, Y. Q. Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol. Ind. Eng. Chem. Res. 2019, 58, 9030–9037.
234
Views
41
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).