AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhanced methanol production from photothermal CO2 reduction via multilevel interface design

Hongmin Wang1,2,3,§Bo Shang1,2,§Chungseok Choi1,2,4Sungho Jeon5Yuanzuo Gao1,2Tyler Wang2,6Nia J. Harmon1,2Mengxia Liu2,7Eric A. Stach5Hailiang Wang1,2 ( )
Department of Chemistry, Yale University, New Haven, CT 06520, USA
Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
Current address: School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Current address: SKKU Advanced Institute of Nanotechnology and Department of Nanoengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
Department of Physics, Yale University, New Haven, CT 06511, USA
Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA

§ Hongmin Wang and Bo Shang contributed equally to this work.

Show Author Information

Graphical Abstract

An intertwined carbon/catalyst interface optimizes light-to-heat conversion and heat transfer, resulting in selective and efficient photothermal methanol production from CO2 hydrogenation.

Abstract

Photothermal CO2 hydrogenation is a promising route to produce methanol as a sustainable liquid solar fuel. However, most existing catalysts require a combination of solar irradiation and additional heat input to achieve a satisfactory reaction rate. For the few that can be driven solely by light, their reaction rates are one order of magnitude lower. We develop a photothermal catalyst with multilevel interfaces that achieves improved methanol production from photothermal CO2 hydrogenation without external heat. The catalyst features a layered structure comprising Cu/ZnO/Al2O3 (CZA) covered by oxidized carbon black (oCB), where the oCB/CZA interface promotes efficient heat generation and transfer, and the Cu/oxide interface contributes to high catalytic activity. Under a mild pressure of 8 bar, our oCB/CZA catalyst shows a methanol selectivity of 64.7% with a superior production rate of 4.91 mmol·gcza−1·h−1, at least one order of magnitude higher than other photothermal catalysts solely driven by light. This work demonstrates a photothermal catalyst design strategy for liquid solar fuel production.

Electronic Supplementary Material

Download File(s)
7160_ESM.pdf (3.3 MB)

References

[1]

Tountas, A. A.; Peng, X. Y.; Tavasoli, A. V.; Duchesne, P. N.; Dingle, T. L.; Dong, Y. C.; Hurtado, L.; Mohan, A.; Sun, W.; Ulmer, U. et al. Towards solar methanol: Past, present, and future. Adv. Sci. 2019, 6, 1801903.

[2]

Zhang, Z. S.; Ding, X.; Yang, X. G.; Tu, W. G.; Wang, L.; Zou, Z. G. Shedding light on CO2: Catalytic synthesis of solar methanol. EcoMat 2021, 3, e12078.

[3]

Sheldon, D. Methanol production—A technical history. Johnson Matthey Technol. Rev. 2017, 61, 172–182.

[4]

Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong, Y. C. et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018, 2, 1369–1381.

[5]

Wu, D. D.; Deng, K. X.; Hu, B.; Lu, Q. Y.; Liu, G. L.; Hong, X. L. Plasmon-assisted photothermal catalysis of low-pressure CO2 hydrogenation to methanol over Pd/ZnO catalyst. ChemCatChem 2019, 11, 1598–1601.

[6]

Xie, B. Q.; Wong, R. J.; Tan, T. H.; Higham, M.; Gibson, E. K.; Decarolis, D.; Callison, J.; Aguey-Zinsou, K. F.; Bowker, M.; Catlow, C. R. A. et al. Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nat. Commun. 2020, 11, 1615.

[7]

Yan, T. J.; Li, N.; Wang, L. L.; Liu, Q.; Ali, F. M.; Wang, L.; Xu, Y. F.; Liang, Y.; Dai, Y.; Huang, B. B. et al. How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst. Energy Environ. Sci. 2020, 13, 3054–3063.

[8]

Xie, B. Q.; Kumar, P.; Tan, T. H.; Esmailpour, A. A.; Aguey-Zinsou, K. F.; Scott, J.; Amal, R. Doping-mediated metal–support interaction promotion toward light-assisted methanol production over Cu/ZnO/Al2O3. ACS Catal. 2021, 11, 5818–5828.

[9]

Ling, L. L.; Yang, W. J.; Yan, P.; Wang, M.; Jiang, H. L. Light-assisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in close proximity. Angew. Chem., Int. Ed. 2022, 61, e202116396.

[10]

Xie, B. Q.; Tan, T. H.; Kalantar-Zadeh, K.; Zheng, J. W.; Kumar, P.; Jiang, J. J.; Zhou, S. J.; Scott, J.; Amal, R. Promoting low-temperature methanol production over mixed oxide supported Cu catalysts: Coupling ceria-promotion and photo-activation. Appl. Catal. B: Environ. 2022, 315, 121599.

[11]

Zhang, Z. S.; Mao, C. L.; Meira, D. M.; Duchesne, P. N.; Tountas, A. A.; Li, Z.; Qiu, C. Y.; Tang, S. L.; Song, R.; Ding, X. et al. New black indium oxide-tandem photothermal CO2-H2 methanol selective catalyst. Nat. Commun. 2022, 13, 1512.

[12]

Chen, J. M.; Wang, Y. J.; Wang, F. L.; Li, Y. W. Photo-induced switching of CO2 hydrogenation pathway towards CH3OH production over Pt@UiO-66-NH2(Co). Angew. Chem., Int. Ed. 2023, 62, e202218115.

[13]

Jiang, Z. Y.; Yuan, Z. M.; Duchesne, P. N.; Sun, W.; Lyu, X.; Miao, W. K.; Viasus Pérez, C. J.; Xu, Y. F.; Yang, D. R.; Huang, B. B. et al. A living photocatalyst derived from CaCu3Ti4O12 for CO2 hydrogenation to methanol at atmospheric pressure. Chem Catal. 2023, 3, 100507.

[14]

Lu, Z.; Xu, Y. F.; Zhang, Z. S.; Sun, J. C.; Ding, X.; Sun, W.; Tu, W. G.; Zhou, Y. F.; Yao, Y.; Ozin, G. A. et al. Wettability engineering of solar methanol synthesis. J. Am. Chem. Soc. 2023, 145, 26052–26060.

[15]

Xu, Y. F.; Tountas, A. A.; Song, R.; Ye, J.; Wei, J. H.; Ji, S. F.; Zhao, L.; Zhou, W. Z.; Chen, J. H.; Zhao, G. S. et al. Equilibrium photo-thermodynamics enables a sustainable methanol synthesis. Joule 2023, 7, 738–752.

[16]

Deng, B. W.; Song, H.; Wang, Q.; Hong, J. N.; Song, S.; Zhang, Y. W.; Peng, K.; Zhang, H. W.; Kako, T.; Ye, J. H. Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure. Appl. Catal. B: Environ. 2023, 327, 122471.

[17]

Yan, T. J.; Li, N.; Wang, L. L.; Ran, W. G.; Duchesne, P. N.; Wan, L. L.; Nguyen, N. T.; Wang, L.; Xia, M. K.; Ozin, G. A. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nat. Commun. 2020, 11, 6095.

[18]
Lokanc, M.; Eggert, R.; Redlinger, M. The Availability of Indium: The Present, Medium Term, and Long Term; NREL/SR-6A20-62409; National Renewable Energy Laboratory: Golden, USA, 2015.
[19]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[20]

Pan, W. Y.; Wei, Z. H.; Su, Y. H.; Lian, Y. B.; Zheng, Z. Y.; Yuan, H. H.; Qin, Y. Z.; Xie, X. L.; Bai, Q. Q.; Jiao, Z. Y. et al. Hydroxylated metal-organic-layer nanocages anchoring single atomic cobalt sites for robust photocatalytic CO2 reduction. Nano Res. 2024, 17, 2410–2419.

[21]

Wang, H. M.; Fu, S. T.; Shang, B.; Jeon, S.; Zhong, Y. R.; Harmon, N. J.; Choi, C.; Stach, E. A.; Wang, H. L. Solar-driven CO2 conversion via optimized photothermal catalysis in a lotus pod structure. Angew. Chem., Int. Ed. 2023, 62, e202305251.

[22]

Kung, H. H. Deactivation of methanol synthesis catalysts - a review. Catal. Today 1992, 11, 443–453.

[23]

Du, S. C.; Tang, W. X.; Lu, X. X.; Wang, S. B.; Guo, Y. B.; Gao, P. X. Cu-decorated ZnO nanorod array integrated structured catalysts for low-pressure CO2 hydrogenation to methanol. Adv. Mater. Interfaces 2018, 5, 1700730.

[24]

Kamsuwan, T.; Guntida, A.; Praserthdam, P.; Jongsomjit, B. Differences in deterioration behaviors of Cu/ZnO/Al2O3 catalysts with different Cu contents toward hydrogenation of CO and CO2. ACS Omega 2022, 7, 25783–25797.

[25]

Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.

[26]

Baltes, C.; Vukojevic, S.; Schuth, F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J. Catal. 2008, 258, 334–344.

[27]
Kunkes, E.; Behrens, M. Methanol chemistry. In Chemical Energy Storage. Schlögl, R., Ed.; De Gruyter: Berlin, 2013; pp 413–442.
[28]

Xin, Y.; Yu, K. F.; Zhang, L. T.; Yang, Y. R.; Yuan, H. B.; Li, H. L.; Wang, L. B.; Zeng, J. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 2021, 33, 2008145.

[29]

Davda, R. R.; Shabaker, J. W.; Huber, G. W.; Cortright, R. D.; Dumesic, J. A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl. Catal. B: Environ. 2005, 56, 171–186.

[30]

Kipnis, M.; Volnina, E.; Belostotsky, I.; Galkin, R.; Zhilyaeva, N.; Levin, I.; Kottsov, S.; Ezhov, A. Effective Cu/ZnO/Al2O3 catalyst for methanol production: Synthesis, activation, catalytic performance, and regeneration. Catal. Res. 2022, 2, 27.

[31]

Liang, B. L.; Ma, J. G.; Su, X.; Yang, C. Y.; Duan, H. M.; Zhou, H. W.; Deng, S. L.; Li, L.; Huang, Y. Q. Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol. Ind. Eng. Chem. Res. 2019, 58, 9030–9037.

Nano Research
Article number: 94907160
Cite this article:
Wang H, Shang B, Choi C, et al. Enhanced methanol production from photothermal CO2 reduction via multilevel interface design. Nano Research, 2025, 18(2): 94907160. https://doi.org/10.26599/NR.2025.94907160

234

Views

41

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 November 2024
Revised: 26 November 2024
Accepted: 26 November 2024
Published: 07 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return