AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Optimizing photothermal CO2 reduction through integrated band-division utilization and thermal management structure

Xue Ding§Wenhao Jing§Guiwei HeZhongjian JiangFeng WangYa Liu ( )Liejin Guo ( )
International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow, Xi’an Jiaotong University, Xi’an 710049, China

§ Xue Ding and Wenhao Jing contributed equally to this work.

Show Author Information

Graphical Abstract

This study presents integrated band-division utilization of the full solar spectrum combined with thermal management to achieve efficient photothermal catalytic for CO2 reduction reactions.

Abstract

Solar-driven photothermal catalytic CO2 conversion into fuels offers a promising approach to reducing fossil fuel dependence. To enhance the efficiency of photothermal CO2 reduction, photothermal catalyst design must not only sustain the high temperatures required for the reaction but also effectively utilize the entire solar spectrum. In this study, we present a novel photothermal catalyst architecture BiVO4/Bi/BiOCl that surpasses traditional designs by integrating plasmonic metal Bi as the “hot spot” and BiOCl as the thermal insulation layer on the outermost part. This structure realizes thermal management, contributing to maintaining the high temperatures required for the reaction. The BiVO4/Bi/BiOCl multi-component system synergistically absorbs the full solar light spectrum and achieves band-division utilization: short- and mid-wavelengths drive reduction and oxidation reactions, respectively, while long-wavelengths induce the photothermal effect. The BiVO4/Bi/BiOCl catalyst demonstrates high-efficiency CO2 conversion performance in an outdoor concentrating system, achieving a CO production rate of 9.5 μmol/h. This work presents a design strategy for functional photothermal catalysts, making them viable candidates for industrial-scale CO2 conversion processes.

Electronic Supplementary Material

Download File(s)
7157_ESM.pdf (3.6 MB)

References

[1]

Lin, H. W.; Luo, S. Q.; Zhang, H. B.; Ye, J. H. Toward solar-driven carbon recycling. Joule 2022, 6, 294–314.

[2]

Sorcar, S.; Thompson, J.; Hwang, Y.; Park, Y. H.; Majima, T.; Grimes, C. A.; Durrant, J. R.; In, S. I. High-rate solar-light photoconversion of CO2 to fuel: Controllable transformation from C1 to C2 products. Energy Environ. Sci. 2018, 11, 3183–3193.

[3]

Li, X. D.; Li, L.; Chu, X. Y.; Liu, X. H.; Chen, G. B.; Guo, Q. Q.; Zhang, Z.; Wang, M. C.; Wang, S. M.; Tahn, A. et al. Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays. Nat. Commun. 2024, 15, 5639.

[4]

Bai, S. J.; Jing, W. H.; He, G. W.; Liao, C.; Wang, F.; Liu, Y.; Guo, L. J. Near-infrared-responsive photocatalytic CO2 conversion via in situ generated Co3O4/Cu2O. ACS Nano 2023, 17, 10976–10986.

[5]

Ren, Y. Q.; Fu, Y. W.; Li, N. X.; You, C. J.; Huang, J.; Huang, K.; Sun, Z. K.; Zhou, J. C.; Si, Y. T.; Zhu, Y. H. et al. Concentrated solar CO2 reduction in H2O vapour with > 1% energy conversion efficiency. Nat. Commun. 2024, 15, 4675.

[6]

Ding, L. L.; Li, K.; Li, J. H.; Lu, Q. H.; Fang, F.; Wang, T.; Chang, K. Integrated coupling utilization of the solar full spectrum for promoting water splitting activity over a CIZS semiconductor. ACS Nano 2023, 17, 11616–11625.

[7]

Yan, K.; Wu, D. H.; Wang, T.; Chen, C.; Liu, S. J.; Hu, Y. G.; Gao, C.; Chen, H. Y.; Li, B. X. Highly selective ethylene production from solar-driven CO2 reduction on the Bi2S3@In2S3 catalyst with In–SV–Bi active sites. ACS Catal. 2023, 13, 2302–2312.

[8]

Chen, Y.; Zhang, Y. M.; Fan, G. Z.; Song, L. Z.; Jia, G.; Huang, H. T.; Ouyang, S. X.; Ye, J. H.; Li, Z. S.; Zou, Z. G. Cooperative catalysis coupling photo-/photothermal effect to drive sabatier reaction with unprecedented conversion and selectivity. Joule 2021, 5, 3235–3251.

[9]

Yu, X. W.; Ding, X.; Yao, Y. F.; Gao, W. G.; Wang, C.; Wu, C. Y.; Wu, C. P.; Wang, B.; Wang, L.; Zou, Z. G. Layered high-entropy metallic glasses for photothermal CO2 methanation. Adv. Mater. 2024, 36, 2312942.

[10]

Lian, Z. C.; Wu, F.; Zi, J. Z.; Li, G. S.; Wang, W.; Li, H. X. Infrared light-induced anomalous defect-mediated plasmonic hot electron transfer for enhanced photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 15482–15487.

[11]

Xu, J. Q.; Ju, Z. Y.; Zhang, W.; Pan, Y.; Zhu, J. F.; Mao, J. W.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Chen, H. et al. Efficient infrared-light-driven CO2 reduction over ultrathin metallic Ni-doped CoS2 nanosheets. Angew. Chem., Int. Ed. 2021, 60, 8705–8709.

[12]

Jiang, W. B.; Low, B. Q. L.; Long, R.; Low, J.; Loh, H.; Tang, K. Y.; Chai, C. H. T.; Zhu, H. J.; Zhu, H.; Li, Z. B. et al. Active site engineering on plasmonic nanostructures for efficient photocatalysis. ACS Nano 2023, 17, 4193–4229.

[13]

Jiang, H. Y.; Wang, L. Y.; Kaneko, H.; Gu, R. T.; Su, G. X.; Li, L.; Zhang, J.; Song, H. C.; Zhu, F.; Yamaguchi, A. et al. Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with activities approaching the thermodynamic limit. Nat. Catal. 2023, 6, 519–530.

[14]

Yang, J. J.; Li, L.; Xiao, C.; Xie, Y. Dual-plasmon resonance coupling promoting directional photosynthesis of nitrate from air. Angew. Chem., Int. Ed. 2023, 62, e202311911.

[15]

Hu, C. Y.; Chen, X.; Low, J.; Yang, Y. W.; Li, H.; Wu, D.; Chen, S. M.; Jin, J. B.; Li, H.; Ju, H. X. et al. Near-infrared-featured broadband CO2 reduction with water to hydrocarbons by surface plasmon. Nat. Commun. 2023, 14, 221.

[16]

Xu, Z. H.; Yue, W. H.; Li, C. C.; Wang, L. Z.; Xu, Y. K.; Ye, Z. W.; Zhang, J. L. Rational synthesis of Au–CdS composite photocatalysts for broad-spectrum photocatalytic hydrogen evolution. ACS Nano 2023, 17, 11655–11664.

[17]

Ziarati, A.; Zhao, J.; Afshani, J.; Kazan, R.; Perez Mellor, A.; Rosspeintner, A.; McKeown, S.; Bürgi, T. Advanced catalyst for CO2 photo-reduction: From controllable product selectivity by architecture engineering to improving charge transfer using stabilized Au clusters. Small 2023, 19, 2207857.

[18]

Guo, Y. C.; Sun, J. M.; Tang, Y.; Jia, X. F.; Nie, Y.; Geng, Z. K.; Wang, C. Y.; Zhang, J. Y.; Tan, X.; Zhong, D. C. et al. Efficient interfacial electron transfer induced by hollow-structured ZnIn2S4 for extending hot electron lifetimes. Energy Environ. Sci. 2023, 16, 3462–3473.

[19]

Sayed, M.; Yu, J. G.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, 122, 10484–10537.

[20]

Wang, H. M.; Xu, S.; Ni, B. X.; Xu, J. T.; Solan, G. A.; Gong, S. Q.; Min, Y. L. Interface interaction mediated surface plasmon resonance enhancement promoted visible-light-driven CO2 reduction with water. Appl. Catal. B: Environ. Energy 2024, 355, 124141.

[21]

Cai, M. J.; Wu, Z. Y.; Li, Z.; Wang, L.; Sun, W.; Tountas, A. A.; Li, C. R.; Wang, S. H.; Feng, K.; Xu, A. B. et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy 2021, 6, 807–814.

[22]

Wang, Z. Q.; Zhu, J. C.; Zu, X. L.; Wu, Y.; Shang, S.; Ling, P. Q.; Qiao, P. Z.; Liu, C. Y.; Hu, J.; Pan, Y. et al. Selective CO2 photoreduction to CH4 via Pd δ +-assisted hydrodeoxygenation over CeO2 nanosheets. Angew. Chem., Int. Ed. 2022, 61, e202203249.

[23]

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

[24]

Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022, 34, 2200057.

[25]

Gong, S. Q.; Niu, Y. L.; Liu, X.; Xu, C.; Chen, C. C.; Meyer, T. J.; Chen, Z. F. Selective CO2 photoreduction to acetate at asymmetric ternary bridging sites. ACS Nano 2023, 17, 4922–4932.

[26]

Chakraborty, S.; Das, R.; Riyaz, M.; Das, K.; Singh, A. K.; Bagchi, D.; Vinod, C. P.; Peter, S. C. Wurtzite CuGaS2 with an in-situ-formed CuO layer photocatalyzes CO2 conversion to ethylene with high selectivity. Angew. Chem., Int. Ed. 2023, 62, e202216613.

[27]

Su, B.; Zheng, M.; Lin, W.; Lu, X. F.; Luan, D. Y.; Wang, S. B.; Lou, X. W. S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Adv. Energy Mater. 2023, 13, 2203290.

[28]

Liu, C.; Zhou, J. L.; Su, J. Z.; Guo, L. J. Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance. Appl. Catal. B: Environ. 2019, 241, 506–513.

[29]

Sun, Z.; Liu, T. W.; Shen, Q. Q.; Li, H. M.; Liu, X. G.; Jia, H. S.; Xue, J. B. Synergetic effect of oxygen vacancies coupled with in-situ Bi clusters in Bi2WO6 for enhancing photocatalytic CO2 reduction. Appl. Surf. Sci. 2023, 616, 156530.

[30]

Dai, W. L.; Wang, P.; Long, J. F.; Xu, Y.; Zhang, M.; Yang, L. X.; Zou, J. P.; Luo, X. B.; Luo, S. L. Constructing robust Bi active sites in situ on α-Bi2O3 for efficient and selective photoreduction of CO2 to CH4 via directional transfer of electrons. ACS Catal. 2023, 13, 2513–2522.

[31]

Guan, M. L.; Lu, N.; Zhang, X.; Wang, Q. W.; Bao, J.; Chen, G. Y.; Yu, H.; Li, H. M.; Xia, J. X.; Gong, X. Z. Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi12O17Cl2 nanosheets with efficient and selective photoreduction of CO2 to CO. Carbon Energy 2024, 6, e420.

[32]

Wang, S. C.; Chen, P.; Bai, Y.; Yun, J. H.; Liu, G.; Wang, L. Z. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 2018, 30, 1800486.

[33]

Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.

[34]

Wang, H.; Cao, C.; Li, D. F.; Ge, Y. X.; Chen, R. T.; Song, R.; Gao, W. S.; Wang, X. L.; Deng, X. T.; Zhang, H. J. et al. Achieving high selectivity in photocatalytic oxidation of toluene on amorphous BiOCl nanosheets coupled with TiO2. J. Am. Chem. Soc. 2023, 145, 16852–16861.

[35]

Li, Y. X.; Hui, D. P.; Sun, Y. Q.; Wang, Y.; Wu, Z. J.; Wang, C. Y.; Zhao, J. C. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron–proton-transfer mediators. Nat. Commun. 2021, 12, 123.

[36]

Wang, Z.; Jiang, C. L.; Huang, R.; Peng, H.; Tang, X. D. Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method. J. Phys. Chem. C 2014, 118, 1155–1160.

[37]

Wang, K.; Ren, Y. Q.; Wang, N.; Cheng, M.; Zhou, J. C.; Ge, Y.; Li, N. X. Band-division utilization of core–shell photocatalyst under condenser solar-light and enhancement of synergistic catalytic CO2 reduction. Chem. Eng. J. 2024, 479, 147529.

[38]

Liu, S. K.; Wang, X.; Chen, Y. H.; Li, Y. P.; Wei, Y.; Shao, T. Y.; Ma, J.; Jiang, W. B.; Xu, J. C.; Dong, Y. Y. et al. Efficient thermal management with selective metamaterial absorber for boosting photothermal CO2 hydrogenation under sunlight. Adv. Mater. 2024, 36, 2311957.

[39]

Li, Q.; Wang, C. Q.; Wang, H. L.; Chen, J.; Chen, J.; Jia, H. P. Disclosing support-size-dependent effect on ambient light-driven photothermal CO2 hydrogenation over nickel/titanium dioxide. Angew. Chem., Int. Ed. 2024, 63, e202318166.

[40]

Liu, B.; Cheng, M.; Zhang, C. Y.; Si, Y. T.; Zhou, J. C.; Ren, Y. Q.; Guan, J.; Duan, L. B.; Liu, M. C.; Jing, D. W. et al. Au-Cu dual-single-atom sites on Bi2WO6 with oxygen vacancy for CO2 photoreduction towards multicarbon products. Appl. Catal. B: Environ. Energy 2024, 357, 124263.

[41]

Chen, J. H.; Ren, Y. Q.; Fu, Y. W.; Si, Y. T.; Huang, J.; Zhou, J. C.; Liu, M. C.; Duan, L. B.; Li, N. X. Integration of Co single atoms and Ni clusters on defect-rich ZrO2 for strong photothermal coupling boosts photocatalytic CO2 reduction. ACS Nano 2024, 18, 13035–13048.

Nano Research
Article number: 94907157
Cite this article:
Ding X, Jing W, He G, et al. Optimizing photothermal CO2 reduction through integrated band-division utilization and thermal management structure. Nano Research, 2025, 18(2): 94907157. https://doi.org/10.26599/NR.2025.94907157

230

Views

29

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 September 2024
Revised: 08 November 2024
Accepted: 26 November 2024
Published: 31 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return