Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemical reduction of CO2 (ECO2RR) into value-added fuels and chemicals presents a promising avenue for mitigating CO2 emissions while simultaneously contributing to economic growth, thereby addressing critical environmental and energy challenges. However, the large-scale implementation of ECO2RR is significantly impeded by the necessity to design efficient catalysts that exhibit both high activity and selectivity. These catalysts must overcome the sluggish kinetics associated with ECO2RR as well as the competing hydrogen evolution reaction. In recent decades, electrospun nanofibers have garnered considerable attention as potential catalysts for ECO2RR, attributable to their high surface area with abundant active sites, tunable functionalities, and enhanced selectivity. This review comprehensively examines the rational design of ECO2RR catalysts utilizing electrospinning technology. We commence with an in-depth exploration of the principles underlying the electrospinning process and subsequently summarize key factors influencing this process, including solution parameters, environmental conditions, and electrospinning operational parameters. Moreover, we discuss recent advancements in ECO2RR catalysts synthesized through electrospinning, encompassing carbon nanofibers, composite nanofibers, and metal nanofibers. Finally, we delineate future perspectives and the challenges that electrospun materials face in the context of ECO2RR applications. This review aims to inspire high-quality research directed toward the advancement of electrospun materials for improved performance in ECO2RR.
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
Xia, R.; Overa, S.; Jiao, F. Emerging electrochemical processes to decarbonize the chemical industry. JACS Au 2022, 2, 1054–1070.
Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.
Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem., Int. Ed. 2023, 135, e202315621.
Newman, R.; Noy, I. The global costs of extreme weather that are attributable to climate change. Nat. Commun. 2023, 14, 6103.
Zeng, M.; Fang, W. S.; Cen, Y. R.; Zhang, X. Y.; Hu, Y. M.; Xia, B. Y. Reaction environment regulation for electrocatalytic CO2 reduction in acids. Angew. Chem., Int. Ed. 2024, 63, e202404574.
Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem. 2023, 135, e202301879.
Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem. 2024, 136, e202319618.
Guan, S. Y.; Yuan, Z. L.; Zhao, S. Q.; Zhuang, Z. C.; Zhang, H. H.; Shen, R. F.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst. Angew. Chem., Int. Ed. 2024, 63, e202408193.
Zhang, Z.; Huang, X.; Chen, Z.; Zhu, J. J.; Endrődi, B.; Janáky, C.; Deng, D. H. Membrane electrode assembly for electrocatalytic CO2 reduction: Principle and application. Angew. Chem., Int. Ed. 2023, 62, e202302789.
Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.
Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.
Yan, Y.; Wen, B. H.; Liu, M. K.; Lei, H.; Yang, J. F.; He, S. Y.; Qu, Z. H.; Xia, W.; Li, H. L.; Zeng, J. Orienting electron fillings in d orbitals of cobalt single atoms for effective zinc-air battery at a subzero temperature. Adv. Funct. Mater. 2024, 34, 2316100.
Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 135, e202308800.
Li, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 2022, 51, 1234–1252.
Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, L.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.
Liu, Y. L.; Zhuang, Z. C.; Liu, Y. X.; Liu, N. Y.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Yu, R. H.; Wang, D. S.; Li, H. T. Shear-strained Pd single-atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2024, 63, e202411396.
Lv, L. Y.; Tan, H.; Kong, Y.; Tang, B.; Ji, Q. Q.; Liu, Y. Y.; Wang, C.; Zhuang, Z. C.; Wang, H. J.; Ge, M. et al. Breaking the scaling relationship in C–N coupling via the doping effects for efficient urea electrosynthesis. Angew. Chem., Int. Ed. 2024, 136, e202401943.
Liang, F.; Zhang, K. W.; Zhang, L.; Zhang, Y. J.; Lei, Y.; Sun, X. L. Recent development of electrocatalytic CO2 reduction application to energy conversion. Small 2021, 17, 2100323.
Ma, F. Y.; Zhang, P. F.; Zheng, X. B.; Chen, L.; Li, Y. R.; Zhuang, Z. C.; Fan, Y. M.; Jiang, P.; Zhao, H.; Zhang, J. W. et al. Steering the site distance of atomic Cu–Cu pairs by first-shell halogen coordination boosts CO2-to-C2 selectivity. Angew. Chem., Int. Ed. 2024, 63, e202412785.
Li, C. B.; Ji, Y.; Wang, Y. P.; Liu, C. X.; Chen, Z. Y.; Tang, J. L.; Hong, Y. W.; Li, X.; Zheng, T. T.; Jiang, Q. et al. Applications of metal-organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 2023, 15, 113.
Huo, L. P.; Lv, M. H.; Li, M. J.; Ni, X. P.; Guan, J. Y.; Liu, J.; Mei, S. X.; Yang, Y. Q.; Zhu, M. M.; Feng, Q. C. et al. Amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived multi-heteroatoms-doped carbon for ORR/OER bifunctional electrocatalysis. Adv. Mater. 2024, 36, 2312868.
Dai, M. Y.; Zhang, Y.; Ni, W. P.; Zhang, S. G. A perspective on electrochemical conversion of CO2 to multicarbon chemicals in ionic liquids-based electrolytes. Energy Lab 2023, 1, 230006.
Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.
Chen, F. J.; Mu, X. Q.; Zhou, J. L.; Wang, S. C.; Liu, Z. Y.; Zhou, D. Y.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Engineering the active sites of MOF-derived catalysts: From oxygen activation to activate metal-air batteries. Chin. J. Chem. 2024, 42, 2520–2535.
Zhang, M. Y.; Zhou, D. Y.; Mu, X. Q.; Wang, D. S.; Liu, S. L.; Dai, Z. H. Regulating the critical intermediates of dual-atom catalysts for CO2 electroreduction. Small 2024, 20, 2402050.
Guo, Y. J.; Liu, Z. Y.; Zhou, D. Y.; Zhang, M. Y.; Zhang, Y.; Li, R. Z.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Sci. China Mater. 2024, 67, 1706–1720.
Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.
Burdyny, T.; Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 2019, 12, 1442–1453.
Gao, Y.; Ge, J. L.; Zhang, J. Q.; Cao, T.; Sun, Z. Y.; Yan, W. S.; Wang, Y.; Lin, J.; Chen, W. X.; Liu, Z. Asymmetrically coordinated main group atomic In–S1N3 interface sites for promoting electrochemical CO2 reduction. Nano Res. 2024, 17, 5011–5021.
Qiu, W. B.; Qin, S. M.; Li, Y. B.; Cao, N.; Cui, W. R.; Zhang, Z. D.; Zhuang, Z. C.; Wang, D. S.; Zhang, Y. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem. 2024, 136, e202402684.
Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 136, e202315032.
Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.
Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.
Li, X. T.; Liu, Q.; Wang, J. H.; Meng, D. C.; Shu, Y. J.; Lv, X. Z.; Zhao, B.; Yang, H.; Cheng, T.; Gao, Q. S. et al. Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. Chem 2022, 8, 2148–2162.
Wang, M.; Chen, C. J.; Jia, S. Q.; Han, S. T.; Dong, X.; Zhou, D. W.; Yao, T.; Fang, M. H.; He, M. Y.; Xia, W. et al. Enhancing C2+ product selectivity in CO2 electroreduction by enriching intermediates over carbon-based nanoreactors. Chem. Sci. 2024, 15, 8451–8458.
Xu, L.; Ma, X. D.; Wu, L. M.; Tan, X. X.; Song, X. N.; Zhu, Q. G.; Chen, C. J.; Qian, Q. L.; Liu, Z. M.; Sun, X. F. et al. In situ periodic regeneration of catalyst during CO2 electroreduction to C2+ products. Angew. Chem. , Int. Ed. 2022, 61, e202210375.
Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.
Xia, J. K.; Xu, J. W.; Yu, B.; Liang, X.; Qiu, Z.; Li, H.; Feng, H. J.; Li, Y. F.; Cai, Y. J.; Wei, H. Y. et al. A metal-sulfur-carbon catalyst mimicking the two-component architecture of nitrogenase. Angew. Chem. 2024, 136, e202412740.
Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.
Yang, J. R.; Zhu, C. X.; Wang, D. S. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem. 2024, 136, e202406883.
Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem. 2024, 136, e202405637.
He, X. R.; Chen, J. W.; Xu, Y. F.; Shen, Y.; Zeng, Y. F.; Zhu, J. Y.; Xu, B. J.; Wang, C. Metal-organic layers induce in situ nano-structuring of Cu surface in electrocatalytic CO2 reduction. Nano Res. 2023, 16, 4554–4561.
Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d-p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem., Int. Ed. 2024, 136, e202404968.
Zhao, S.; Liu, M. J.; Qu, Z. H.; Yan, Y.; Zhang, Z. R.; Yang, J. F.; He, S. Y.; Xu, Z.; Zhu, Y. Q.; Luo, L. H. et al. Cascade synthesis of Fe-N2-Fe dual-atom catalysts for superior oxygen catalysis. Angew. Chem., Int. Ed. 2024, 63, e202408914.
Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 135, e202217449.
Li, Y.; Shi, G. Q.; Chen, T.; Zhu, L.; Yu, D. F.; Sun, Y.; Besenbacher, F.; Yu, M. Simultaneous increase of conductivity, active sites and structural strain by nitrogen injection for high-yield CO2 electro-hydrogenation to liquid fuel. Appl. Catal. B: Environ. 2022, 305, 121080.
Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.
Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.
Liu, P. C.; Liu, Y. Y.; Wang, K. L.; Shi, S.; Jin, M. M.; Liu, J. X.; Qin, T.; Liu, Q.; Liu, X. J.; He, J. Revealing the role of electrode potential micro-environments in single Mn atoms for carbon dioxide and oxygen electrolysis. Nano Res. 2024, 17, 7957–7966.
Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.
Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.
Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.
Li, Z. M.; Yan, Y.; Liu, M. J.; Qu, Z. H.; Yue, Y. C.; Mao, T.; Zhao, S.; Liu, M. K.; Lin, Z. Q. Robust ring-opening reaction via asymmetrically coordinated Fe single atoms scaffolded by spoke-like mesoporous carbon nanospheres. Proc. Natl. Acad. Sci. USA 2023, 120, e2218261120.
Liu, F.; Hu, Y.; Qu, Z. H.; Ma, X.; Li, Z. F.; Zhu, R.; Yan, Y.; Wen, B. H.; Ma, Q. W.; Liu, M. J. et al. Rapid production of kilogram-scale graphene nanoribbons with tunable interlayer spacing for an array of renewable energy. Proc. Natl. Acad. Sci. USA 2023, 120, e2303262120.
Yan, Y.; Liang, S.; Wang, X.; Zhang, M. Y.; Hao, S. M.; Cui, X.; Li, Z. W.; Lin, Z. Q. Robust wrinkled MoS2/N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc-air batteries. Proc. Natl. Acad. Sci. USA 2021, 118, e2110036118.
Wang, C. L.; Lv, Z. H.; Yang, W. X.; Feng, X.; Wang, B. A rational design of functional porous frameworks for electrocatalytic CO2 reduction reaction. Chem. Soc. Rev. 2023, 52, 1382–1427.
Mukherjee, A.; Abdinejad, M.; Mahapatra, S. S.; Ruidas, B. C. Metal sulfide-based nanomaterials for electrochemical CO2 reduction. J. Mater. Chem. A 2023, 11, 9300–9332.
Zhou, Y.; Wang, K.; Zheng, S. J.; Cheng, X.; He, Y. X.; Qin, W.; Zhang, X. H.; Chang, H. X.; Zhong, N. B.; He, X. F. Advancements in electrochemical CO2 reduction reaction: A review on CO2 mass transport enhancement strategies. Chem. Eng. J. 2024, 486, 150169.
Lai, W. C.; Qiao, Y.; Wang, Y. N.; Huang, H. W. Stability issues in electrochemical CO2 reduction: Recent advances in fundamental understanding and design strategies. Adv. Mater. 2023, 35, 2306288.
Wang, H. R.; Sun, R. B.; Liu, P. G.; Hu, H. H.; Ling, C.; Han, X.; Shi, Y.; Zheng, X. S.; Wu, G.; Hong, X. Interstitial carbon induces enriched Cu δ + sites in Cu2O nanoparticles to facilitate CO2 electroreduction to C2+ products. Nano Res. 2024, 17, 7013–7019.
Wang, P.; Wang, Q. J.; Wu, D. X.; Zhang, Y. Y.; Kang, S. X.; Wang, X. C.; Gu, J. Y.; Wu, H.; Xu, Z. H.; Jiang, Q. Enhancing osteogenic bioactivities of coaxial electrospinning nano-scaffolds through incorporating iron oxide nanoparticles and icaritin for bone regeneration. Nano Res. 2024, 17, 6430–6442.
Bae, D.; Lee, T.; Kwon, W.; Oh, S. H.; Nam, D. H. Porous Cu/C nanofibers promote electrochemical CO2-to-ethylene conversion via high CO2 availability. J. Mater. Chem. A 2024, 12, 17295–17305.
Wu, X.; Tong, Z.; Liu, Y. L.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Cao, P.; Zhuang, C. Q.; Shi, Q. Z.; Liu, N. Y. et al. Modification of the CuO electronic structure for enhanced selective electrochemical CO2 reduction to ethylene. Nano Res. 2024, 17, 7194–7202.
Chen, L.; Mei, S. Q.; Fu, K.; Zhou, J. Spinning the future: The convergence of nanofiber technologies and yarn fabrication. ACS Nano 2024, 18, 15358–15386.
Lu, T. D.; Wang, Q.; Gu, S. S.; Sun, S. P. Beyond symmetry: Exploring asymmetric electrospun nanofiber membranes for liquid separation. Adv. Funct. Mater. 2024, 34, 2310218.
Salah, B.; Abdelgawad, A.; El-Demellawi, J. K.; Lu, Q. Q.; Xia, Z. H.; Abdullah, A. M.; Eid, K. Scalable one-pot fabrication of carbon-nanofiber-supported noble-metal-free nanocrystals for synergetic-dependent green hydrogen production: Unraveling electrolyte and support effects. ACS Appl. Mater. Interfaces 2024, 16, 18768–18781.
Bayat, F.; Hashtrodylar, Y.; Karimi, H.; Mehryab, F.; Haeri, A. A precise look at electrospinning parameters in fabricating the polymeric nanofibers: A review on synthetic and natural polymers. J. Pharm. Investig. 2024, 54, 699–750.
Feng, P.; Dong, K.; Xu, Y. L.; Zhang, X.; Jia, H. J.; Prell, H.; Tovar, M.; Manke, I.; Liu, F. Y.; Xiang, H. X. et al. Efficient and homogenous precipitation of sulfur within a 3D electrospun heterocatalytic rutile/anatase TiO2− x framework in lithium-sulfur batteries. Adv. Fiber Mater. 2024, 6, 810–824.
Wang, M.; Lin, L.; Zheng, Z. Y.; Jiao, Z. Y.; Hua, W.; Wang, G. W.; Ke, X. X.; Lian, Y. B.; Lyu, F. L.; Zhong, J. et al. Hydrophobized electrospun nanofibers of hierarchical porosity as the integral gas diffusion electrode for full-pH CO2 electroreduction in membrane electrode assemblies. Energy Environ. Sci. 2023, 16, 4423–4431.
Zhang, J.; Yu, M.; Tao, S. H. Advanced electrospinning nanomaterials: From spinning fabrication techniques to electrochemical applications. Nano Res. 2024, 17, 7077–7116.
Zong, X.; Jin, Y. M.; Liu, C. J.; Yao, Y. L.; Zhang, J. Q.; Luo, W.; Züttel, A.; Xiong, Y. P. Electrospun nanofibers for electrochemical reduction of CO2: A mini review. Electrochem. Commun. 2021, 124, 106968.
Rayleigh, L. On the equilibrium of liquid conducting masses charged with electricity. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1882, 14, 184–186.
Keirouz, A.; Wang, Z.; Reddy, V. S.; Nagy, Z. K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The history of electrospinning: Past, present, and future developments. Adv. Mater. Technol. 2023, 8, 2201723.
Taylor, G. I. Disintegration of water drops in an electric field. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 1969, 280, 383–397.
Taylor, G. I. Electrically driven jets. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 1969, 313, 453–475.
Barhate, R. S.; Ramakrishna, S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J. Membrane Sci. 2007, 296, 1–8.
Doshi, J.; Reneker, D. H. Electrospinning process and applications of electrospun fibers. J. Electrost. 1995, 35, 151–160.
Zong, X. H.; Kim, K.; Fang, D. F.; Ran, S. F.; Hsiao, B. S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43, 4403–4412.
Reneker, D. H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216–223.
Min, L. L.; Yuan, Z. H.; Zhong, L. B.; Liu, Q.; Wu, R. X.; Zheng, Y. M. Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution. Chem. Eng. J. 2015, 267, 132–141.
Jiang, S. H.; Liu, F. Y.; Lerch, A.; Ionov, L.; Agarwal, S. Unusual and superfast temperature-triggered actuators. Adv. Mater. 2015, 27, 4865–4870.
Li, Y.; Zhu, J. D.; Cheng, H.; Li, G. Q.; Cho, H.; Jiang, M. J.; Gao, Q.; Zhang, X. W. Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 2021, 6, 2100410.
Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 2000, 87, 4531–4547.
Reneker, D. H.; Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425.
Zhang, Y. S.; Zhang, X. L.; Silva, S. R. P.; Ding, B.; Zhang, P.; Shao, G. S. Lithium-sulfur batteries meet electrospinning: Recent advances and the key parameters for high gravimetric and volume energy density. Adv. Sci. 2022, 9, 2103879.
Aldossari, A. A.; Shannahan, J. H.; Podila, R.; Brown, J. M. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol. In Vitro 2015, 29, 195–203.
Keirouz, A.; Chung, M.; Kwon, J.; Fortunato, G.; Radacsi, N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. WIREs Nanomed. Nanobiotechnol. 2020, 12, e1626.
Li, X. Y.; Chen, W. C.; Qian, Q. R.; Huang, H. T.; Chen, Y. M.; Wang, Z. Q.; Chen, Q. H.; Yang, J.; Li, J.; Mai, Y. W. Electrospinning-based strategies for battery materials. Adv. Energy Mater. 2021, 11, 2000845.
Jung, J. W.; Lee, C. L.; Yu, S.; Kim, I. D. Electrospun nanofibers as a platform for advanced secondary batteries: A comprehensive review. J. Mater. Chem. A 2016, 4, 703–750.
De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The effect of temperature and humidity on electrospinning. J. Mater. Sci. 2009, 44, 1357–1362.
Haider, A.; Haider, S.; Kang, I. K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188.
Mailley, D.; Hébraud, A.; Schlatter, G. A review on the impact of humidity during electrospinning: From the nanofiber structure engineering to the applications. Macromol. Mater. Eng. 2021, 306, 2100115.
Tripatanasuwan, S.; Zhong, Z. X.; Reneker, D. H. Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution. Polymer 2007, 48, 5742–5746.
Kim, G. T.; Lee, J. S.; Shin, J. H.; Ahn, Y. C.; Hwang, Y. J.; Shin, H. S.; Lee, J. K.; Sung, C. M. Investigation of pore formation for polystyrene electrospun fiber: Effect of relative humidity. Korean J. Chem. Eng. 2005, 22, 783–788.
Luzio, A.; Canesi, E. V.; Bertarelli, C.; Caironi, M. Electrospun polymer fibers for electronic applications. Materials 2014, 7, 906–947.
Uyar, T.; Besenbacher, F. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer 2008, 49, 5336–5343.
Wu, X. H.; Wang, L. G.; Yu, H.; Huang, Y. Effect of solvent on morphology of electrospinning ethyl cellulose fibers. J. Appl. Polym. Sci. 2005, 97, 1292–1297.
Jacobs, V.; Anandjiwala, R. D.; Maaza, M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J. Appl. Polym. Sci. 2010, 115, 3130–3136.
Ding, W.; Wei, S. Y.; Zhu, J. H.; Chen, X. L.; Rutman, D.; Guo, Z. H. Manipulated electrospun PVA nanofibers with inexpensive salts. Macromol. Mater. Eng. 2010, 295, 958–965.
Lee, J. S.; Choi, K. H.; Ghim, H. D.; Kim, S. S.; Chun, D. H.; Kim, H. Y.; Lyoo, W. S. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J. Appl. Polym. Sci. 2004, 93, 1638–1646.
Wu, C. M.; Chiou, H. G.; Lin, S. L.; Lin, J. M. Effects of electrostatic polarity and the types of electrical charging on electrospinning behavior. J. Appl. Polym. Sci. 2012, 126, E89–E97.
Kuzume, A.; Kume, S. Spectrometric monitoring of CO2 electrolysis on a molecularly modified copper surface. Chem. Commun. 2024, 60, 12662–12676.
Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 1986, 15, 897–898.
Xue, D. P.; Xia, H. C.; Yan, W. F.; Zhang, J. N.; Mu, S. C. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 2021, 13, 5.
Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.
Chen, L. L.; Li, M. H.; Zhang, J. N. Tailoring microenvironment for efficient CO2 electroreduction through nanoconfinement strategy. Nano Res. 2024, 17, 7880–7899.
Dong, T.; Li, H. D.; Wang, Z. H.; Geng, Y. L.; Chang, R.; Tian, X. F.; Lai, J. P.; Feng, S. H.; Wang, L. Acidic electroreduction CO2 to formic acid via interfacial modification of Bi nanoparticles at industrial-level current. Nano Res. 2024, 17, 5817–5825.
Chuai, H.; Yang, H. B.; Zhang, S. Boosting electrochemical CO2 reduction to CO by regulating the porous structure of carbon membrane. ACS Appl. Mater. Interfaces 2024, 16, 24823–24830.
Cao, Z. Q.; Liu, S.; Xu, K. Y.; Mao, Y. X.; Wu, Y. J.; Mao, Q. Predictable interfacial mass transfer intensification of Sn-N doped multichannel hollow carbon nanofibers for the CO2 electro-reduction reaction. Sustain. Energy Fuels 2021, 5, 3097–3101.
Wang, H.; Chuai, H. Y.; Chen, X. Y.; Lin, J. L.; Zhang, S.; Ma, X. B. Self-supported porous carbon nanofibers decorated with single Ni atoms for efficient CO2 electroreduction. ACS Appl. Mater. Interfaces 2023, 15, 1376–1383.
Zheng, W. Z.; Wang, Y.; Shuai, L.; Wang, X. Y.; He, F.; Lei, C. J.; Li, Z. J.; Yang, B.; Lei, L. C.; Yuan, C. et al. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 2021, 31, 2008146.
Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.
Wang, X. J.; Wang, Y. J.; Cui, L. Y.; Gao, W. Q.; Li, X.; Liu, H.; Zhou, W. J.; Wang, J. G. Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chin. Chem. Lett. 2024, 35, 110031.
Hu, X. Z.; Liu, Y. N.; Cui, W. J.; Yang, X. X.; Li, J. T.; Zheng, S. X.; Yang, B.; Li, Z. J.; Sang, X. H.; Li, Y. Y. et al. Boosting industrial-level CO2 electroreduction of N-doped carbon nanofibers with confined tin-nitrogen active sites via accelerating proton transport kinetics. Adv. Funct. Mater. 2023, 33, 2208781.
Zong, X.; Zhang, J.; Zhang, J. Q.; Luo, W.; Züttel, A.; Xiong, Y. P. Synergistic Cu/CeO2 carbon nanofiber catalysts for efficient CO2 electroreduction. Electrochem. Commun. 2020, 114, 106716.
Liu, S.; Cao, Y.; Liu, H.; Wang, H. L.; Zhang, B. S.; Zhang, Y. M.; Zhang, L. H.; Zhang, S.; Sun, J. Efficient electrochemical reduction of CO2 promoted by the electrospun Cu1.96S/Cu tandem catalyst. Nanoscale 2021, 13, 16986–16994.
Narayanaru, S.; Anilkumar, G. M.; Ito, M.; Tamaki, T.; Yamaguchi, T. An enhanced electrochemical CO2 reduction reaction on the SnO x -PdO surface of SnPd nanoparticles decorated on N-doped carbon fibers. Catal. Sci. Technol. 2021, 11, 143–151.
Li, Y. M.; Jin, Y. M.; Zhang, X. B.; Fu, M. Y.; Lin, R. F.; Li, G. S.; Xiong, Y. P. cAIMD simulations guided design of atomic praseodymium doping In-Bi nanofibers for high-energy-efficiency CO2 electrolysis to formate in ultra-wide potential window. Adv. Funct. Mater. 2024, 34, 2404660.
Zong, X.; Jin, Y. M.; Zhang, X. B.; Zhang, J. Q.; Li, X.; Xiong, Y. P. Stabilization of oxidation state in ZnO decorated-CeO2 for enhanced formation of CO in CO2 electroreduction. Appl. Surf. Sci. 2023, 609, 155235.
Li, L.; Ozden, A.; Guo, S. Y.; Garcı́a de Arquer, F. P.; Wang, C. H.; Zhang, M. Z.; Zhang, J.; Jiang, H. Y.; Wang, W.; Dong, H. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 2021, 12, 5223.
Li, L.; Liu, Z. Y.; Yu, X. H.; Zhong, M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem. 2023, 135, e202300226.
Yu, X. H.; Xu, Y. T.; Li, L.; Zhang, M. Z.; Qin, W. H.; Che, F. L.; Zhong, M. Coverage enhancement accelerates acidic CO2 electrolysis at ampere-level current with high energy and carbon efficiencies. Nat. Commun. 2024, 15, 1711.
Zhang, W. J.; Liu, J.; Jin, Z. Controlled preparation of cross-linked SnO2 hollow nanotube networks for electrocatalytic CO2 reduction. ACS Appl. Nano Mater. 2023, 6, 11802–11809.
Li, X.; Jiang, X. X.; Kong, Y.; Sun, J. J.; Hu, Q.; Chai, X. Y.; Yang, H. P.; He, C. X. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate. Chin. J. Catal. 2023, 50, 314–323.
Guo, W. J.; Zhou, A.; Cai, W. W.; Zhang, J. T. In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction. Rare Met. 2024, 43, 4312–4320.
Song, D. W.; Zhang, S. P.; Ning, H.; Fei, X.; Wang, M. W.; Wang, X. S.; Wu, W. T.; Zhao, Q. S.; Li, Y. Z.; Wu, M. B. Self-supporting BiCu/carbon hybrid nanofiber membrane promotes efficient CO2 electroreduction to formate. Sci. China Mater. 2024, 67, 788–795.
He, C. Y.; Wang, S. Y.; Jiang, X. X.; Hu, Q.; Yang, H. P.; He, C. X. Bimetallic cobalt-copper nanoparticle-decorated hollow carbon nanofibers for efficient CO2 electroreduction. Front. Chem. 2022, 10, 904241.
Zhang, W. B.; Zeng, J. C.; Liu, H. G.; Shi, Z. P.; Tang, Y.; Gao, Q. S. Co x Ni1− x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction. J. Catal. 2019, 372, 277–286.
Hao, J. C.; Zhu, H.; Li, Y. Z.; Liu, P. X.; Lu, S. L.; Duan, F.; Dong, W. F.; Lu, Y. Y.; Liu, T. X.; Du, M. L. Tuning the electronic structure of AuNi homogeneous solid-solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction. Chem. Eng. J. 2021, 404, 126523.
Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Catal. 2022, 16, 3251–3263.
Wei, X. X.; Xiao, S. H.; Wu, R.; Zhu, Z. Z.; Zhao, L.; Li, Z.; Wang, J. J.; Chen, J. S.; Wei, Z. D. Activating COOH* intermediate by Ni/Ni3ZnC0.7 heterostructure in porous N-doped carbon nanofibers for boosting CO2 electroreduction. Appl. Catal. B: Environ. 2022, 302, 120861.
Zhang, J.; Guo, C. X.; Fang, S. S.; Zhao, X. T.; Li, L.; Jiang, H. Y.; Liu, Z. Y.; Fan, Z. Q.; Xu, W. G.; Xiao, J. P. et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat. Commun. 2023, 14, 1298.
Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581, 178–183.
Li, J.; Chen, W. D.; Wang, M.; Zhu, H. W. Self-supporting copper-based electrode by electrospinning for reduction of carbon dioxide to methane. Energy Technol. 2021, 9, 2100714.
Qu, T.; Hu, J. X.; Dai, X.; Tan, Q.; Liu, Y.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N. Electrospinning highly dispersed Ru nanoparticle-embedded carbon nanofibers boost CO2 reduction in a H2/CO2 fuel cell. ACS Appl. Mater. Interfaces 2021, 13, 23523–23531.
Wang, J.; Cheng, C.; Huang, B. L.; Cao, J. L.; Li, L. G.; Shao, Q.; Zhang, L.; Huang, X. Q. Grain-boundary-engineered La2CuO4 perovskite nanobamboos for efficient CO2 reduction reaction. Nano Lett. 2021, 21, 980–987.
Zhang, D.; Zhou, J.; Luo, Y.; Wang, Y.; Zhang, X. Y.; Chen, X.; Liu, T.; Ding, M. Y. Robust cobalt-free perovskite type electrospun nanofiber cathode for efficient electrochemical carbon dioxide reduction reaction. J. Power Sources 2023, 587, 233705.
Ferreira, A. C.; Martinho, J. F.; Branco, J. B. Hydrogenation of CO2 over cobalt-lanthanide bimetallic oxide nanofibers. ChemCatChem 2022, 14, e202101548.
Jiang, X. X.; Li, X.; Kong, Y.; Deng, C.; Li, X. J.; Hu, Q.; Yang, H. P.; He, C. X. A hierarchically structured tin-cobalt composite with an enhanced electronic effect for high-performance CO2 electroreduction in a wide potential range. J. Energy Chem. 2023, 76, 462–469.
Akhmadjonov, A.; Bae, K. T.; Lee, K. T. Novel perovskite oxide hybrid nanofibers embedded with nanocatalysts for highly efficient and durable electrodes in direct CO2 electrolysis. Nano-Micro Lett. 2024, 16, 93.
Zong, X.; Jing, Y. M.; Li, Y. M.; Zhang, X. B.; Zhang, S. J.; Xie, H. J.; Zhang, J. Q.; Xiong, Y. P. Morphology-controllable ZnO catalysts enriched with oxygen-vacancies for boosting CO2 electroreduction to CO. J. CO2 Util. 2022, 61, 102051.
Sun, S. L.; Cheng, H. Y.; Li, X. C.; Wu, X. M.; Zhen, D. X.; Wang, Y. Q.; Jin, R.; He, G. H. Improving CO2 electroreduction activity by creating an oxygen vacancy-rich surface with one-dimensional In-SnO2 hollow nanofiber architecture. Ind. Eng. Chem. Res. 2021, 60, 1164–1174.
Li, Y. M.; Jin, Y. M.; Zong, X.; Zhang, X. B.; Li, G. S.; Xiong, T. P. In-Bi bimetallic nanofibers with controllable crystal facets for high-rate electrochemical reduction of CO2 to formate. J. Mater. Chem. A 2023, 11, 11445–11453.
Li, H. J.; Huang, H. G.; Huang, W. S.; Zhang, X.; Hai, G. T.; Lai, F. L.; Zhu, T.; Bai, S. X.; Zhang, N.; Liu, T. X. Interfacial accumulation and stability enhancement effects triggered by built-in electric field of SnO2/LaOCl nanofibers boost carbon dioxide electroreduction. Small 2024, 20, 2402654.
Song, L. P.; Liang, Z.; Sun, M. Z.; Huang, B. L.; Du, Y. P. The interfacial effect induced by rare earth oxide in boosting the conversion of CO2 to formate. Energy Environ. Sci. 2022, 15, 3494–3502.
Al Harthi, A.; Al Abri, M.; Younus, H. A.; Al Hajri, R. Criteria and cutting-edge catalysts for CO2 electrochemical reduction at the industrial scale. J. CO2 Util. 2024, 83, 102819.
He, C.; Xu, C.; Zhang, W. X. Instructive synergistic effect of coordinating phosphorus in transition-metal-doped β-phosphorus carbide guiding the design of high-performance CO2RR electrocatalysts. ACS Appl. Mater. Interfaces 2023, 15, 57015–57028.
Zhu, Q.; Gu, Y. T.; Wang, X. Z.; Gu, Y. M.; Ma, J. The Synergistic effect between metal and sulfur vacancy to boost CO2 reduction efficiency: A study on descriptor transferability and activity prediction. JACS Au 2024, 4, 125–138.
Bai, X. W.; Chen, C. J.; Zhao, X. H.; Zhang, Y. H.; Zheng, Y.; Jiao, Y. Accelerating the reaction kinetics of CO2 reduction to multi-carbon products by synergistic effect between cation and aprotic solvent on copper electrodes. Angew. Chem., Int. Ed. 2024, 63, e202317512.
683
Views
205
Downloads
1
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).