AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (43.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Surface micro-arrays enhancing electromagnetic interference shielding of polydimethylsiloxane/multiwalled carbon nanotubes nanocomposites

Ke Jiang1Zhi Chen Ji1Yu Chen Zheng1Shan Huang2 ( )Ming Wang1,3 ( )
Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
School of Mechanics, Civil Engineering and Architectures, Northwestern Polytechnical University, Xi’an 710072, China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
Show Author Information

Graphical Abstract

Surface concave-convex and zig-zag micro-arrays can abruptly enhance electromagnetic shielding performance of materials due to the construction of resonator effect, multiple reflections, multiple scattering, and interference cancellation of electromagnetic waves at these surface structures.

Abstract

Herein, the electromagnetic shielding performance of surface concave-convex (SC) and zig-zag micro-arrays was studied by using a simulation prediction and a three-dimensional (3D) printing custom model. Firstly, surface stripe concave-convex (SSC) and surface cylindrical concave-convex (SCC) micro-arrays with or without zig-zag micro-arrays are designed, and their shielding performance is simulated in multi-bands (C-, X-band). The multiwalled carbon nanotubes/polydimethylsiloxane composites (MWCNT/PDMS) with different SC structures and different electrical conductivity are molded in acrylonitrile-butadiene-styrene copolymer (ABS) molds which are printed by a 3D printer. The results show that the electromagnetic interference shielding effectiveness (EMI SE) of the samples can be enhanced by constructing the SC micro-arrays with zig-zag micro-arrays, and improving with the increase of conductivity and frequency. In addition, the shielding mechanism of the SC-MWCNT/PDMS composites is investigated and discussed by an electromagnetic simulation.

Electronic Supplementary Material

Download File(s)
7153_ESM.pdf (1.4 MB)

References

[1]
He, M. K.; Zhong, X.; Lu, X. H.; Hu, J. W.; Ruan, K. P.; Guo, H.; Zhang, Y. L.; Guo, Y. Q.; Gu, J. W. Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater., in press, DOI: 10.1002/adma.202410186.
[2]

Isari, A. A.; Ghaffarkhah, A.; Hashemi, S. A.; Wuttke, S.; Arjmand, M. Structural design for EMI shielding: From underlying mechanisms to common pitfalls. Adv. Mater. 2024, 36, 2310683.

[3]

Yang, Y.; Tao, J. R.; Yang, D.; He, Q. M.; Chen, X. D.; Wang, M. Improving dispersion and delamination of graphite in biodegradable starch materials via constructing cation-π interaction: Towards microwave shielding enhancement. J. Mater. Sci. Technol. 2022, 129, 196–205.

[4]
He, M. K.; Hu, J. W.; Yan, H.; Zhong, X.; Zhang, Y. L.; Liu, P. B.; Kong, J.; Gu, J. W. Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202316691.
[5]

Tao, J. R.; Tang, X. H.; He, Q. M.; Wang, M. Effect of surface conductivity on electromagnetic shielding of multi-walled carbon nanotubes/poly(ε-caprolactone) composites. Compos. Sci. Technol. 2022, 229, 109715.

[6]

Huang, M. L.; Luo, C. L.; Sun, C.; Zhao, K. Y.; Weng, Y. X.; Wang, M. Achieving absorption-type microwave shielding performance in polydimethylsiloxane/carbon nanotube sandwiched composites via regulating microwave interference effect. Compos. Part A: Appl. Sci. Manuf. 2023, 169, 107532.

[7]

Yang, Y.; Luo, C. L.; Chen, X. D.; Wang, M. Sustainable electromagnetic shielding graphene/nanocellulose thin films with excellent joule heating and mechanical properties via in- situ mechanical exfoliation and crosslinking with cations. Compos. Sci. Technol. 2023, 223, 109913.

[8]

Pan, F.; Shi, Y. Y.; Yang, Y.; Guo, H. T.; Li, L. X.; Jiang, H. J.; Wang, X.; Zeng, Z. H.; Lu, W. Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv. Mater. 2024, 36, 2311135.

[9]

Yang, D.; Tao, J. R.; Yang, Y.; He, Q. M.; Wang, M. Robust microwave absorption in silver-cobalt hollow microspheres with heterointerfaces and electric–magnetic synergism: Towards achieving lightweight and absorption-type microwave shielding composites. J. Mater. Sci. Technol. 2023, 138, 245–255.

[10]

Xu, J.; Fang, J. Y.; Zuo, P. Y.; Wang, Y. Z.; Zhuang, Q. X. Competitively assembled aramid-MXene Janus aerogel film exhibiting concurrently robust shielding and effective anti-reflection performance. Adv. Funct. Mater. 2024, 34, 2400732.

[11]

Tao, J. R.; Luo, C. L.; Huang, M. L.; Weng, Y. X.; Wang, M. Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement. Compos. Part A: Appl. Sci. Manuf. 2023, 164, 107304.

[12]

Sambyal, P.; Noh, S. J.; Hong, J. P.; Kim, W. N.; Iqbal, A.; Hwang, S. S.; Hong, S. M.; Koo, C. M. FeSiAl/metal core shell hybrid composite with high-performance electromagnetic interference shielding. Compos. Sci. Technol. 2019, 172, 66–73.

[13]

He, Q. M.; Tao, J. R.; Yang, D.; Yang, Y.; Wang, M. Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: A simulation and experimental study. Chem. Eng. J. 2023, 454, 140162.

[14]

Chen, Z. B.; Yang, S. D.; Huang, J. H.; Gu, Y. F.; Huang, W. B.; Liu, S. Y.; Lin, Z. Q.; Zeng, Z. P.; Hu, Y. G.; Chen, Z. M. et al. Flexible, transparent and conductive metal mesh films with ultra-high FoM for stretchable heating and electromagnetic interference shielding. Nano-Micro Lett. 2024, 16, 92.

[15]

Ruan, K. P.; Shi, X. T.; Zhang, Y. L.; Guo, Y. Q.; Zhong, X.; Gu, J. W. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem., Int. Ed. 2023, 62, e202309010.

[16]

Bian, F. P.; Huang, R.; Li, X. B.; Hu, J. W.; Lin, S. D. Facile construction of chestnut-like structural fireproof PDMS/Mxene@BN for advanced thermal management and electromagnetic shielding applications. Adv. Sci. 2024, 11, 2307482.

[17]

Yang, J. M.; Wang, H.; Zhang, Y. L.; Zhang, H. X.; Gu, J. W. Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 2024, 16, 31.

[18]
Yin, G.; Wu, J.; Ye, L.; Liu, L. X.; Yu, Y. X.; Min, P.; Yu, Z. Z.; Zhang, H. B. Dynamic adaptive wrinkle-structured silk fibroin/MXene composite fibers for switchable electromagnetic interference shielding. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202314425.
[19]

Fei, Y.; Liang, M.; Zhou, T.; Chen, Y.; Zou, H. W. Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon. 2020, 167, 575–584.

[20]

Tolvanen, J.; Hannu, J.; Hietala, M.; Kordas, K.; Jantunen, H. Biodegradable multiphase poly(lactic acid)/biochar/graphite composites for electromagnetic interference shielding. Compos. Sci. Technol. 2019, 181, 107704.

[21]

Ji, H.; Zhao, R.; Zhang, N.; Jin, C. X.; Lu, X. F.; Wang, C. Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Mater. 2018, 10, 749–760.

[22]

Wang, Z.; Kong, Q. Q.; Yi, Z. L.; Xie, L. J.; Jia, H.; Chen, J. P.; Liu, D.; Jiang, D.; Chen, C. M. Electromagnetic interference shielding material for super-broadband: Multi-walled carbon nanotube/silver nanowire film with an ultrathin sandwich structure. J. Mater. Chem. A 2021, 9, 25999–26009.

[23]

Zhao, W. W.; Xu, H. T.; Zhao, J. D.; Zhu, X. J.; Lu, Y. Y.; Ding, C. B.; He, W. J.; Bian, J.; Liu, L. L.; Ma, L. F. et al. Flexible, lightweight and multi-level superimposed titanium carbide films for enhanced electromagnetic interference shielding. Chem. Eng. J. 2022, 437, 135266.

[24]

Sharma, A.; Babu, M. S.; Kumar, A. V.; Sarathi, R.; Subramanian, V. Electromagnetic shielding efficiency of carbon fibre fabric-sandwiched epoxy-MWCNT nanocomposites. Bull. Mater. Sci. 2022, 45, 44.

[25]

Lee, J. H.; Jang, J. W.; Sohn, S. H.; Lee, S. G.; Park, M. S. Electromagnetic interference (EMI) shielding efficiency (SE) characteristics of the ITO/Ag multilayer structure. Mol. Cryst. Liquid Cryst. 2007, 470, 107–120.

[26]

Li, M. Z.; Jia, L. C.; Zhang, X. P.; Yan, D. X.; Zhang, Q. C.; Li, Z. M. Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. J. Colloid Interface Sci. 2018, 530, 113–119.

[27]

Zhang, H. M.; Zhang, G. C.; Li, J. T.; Fan, X.; Jing, Z. X.; Li, J. W.; Shi, X. T. Lightweight, multifunctional microcellular PMMA/Fe3O4 @MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2017, 100, 128–138.

[28]

Zhang, L. Y.; Liu, M.; Roy, S.; Chu, E. K.; See, K. Y.; Hu, X. Phthalonitrile-based carbon foam with high specific mechanical strength and superior electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces. 2016, 8, 7422–7430.

[29]

Fan, D. L.; Li, N. X.; Li, M. G.; Wang, S.; Li, S. X.; Tang, T. Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance. Chem. Eng. J. 2022, 427, 131635.

[30]

Wang, T.; Kong, W. W.; Yu, W. C.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 162.

[31]

Wang, T.; Yu, W. C.; Sun, W. J.; Jia, L. C.; Gao, J. F.; Tang, J. H.; Su, H. J.; Yan, D. X.; Li, Z. M. Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 200, 108446.

[32]

Sharif, F.; Arjmand, M.; Moud, A. A.; Sundararaj, U.; Roberts, E. P. L. Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 2017, 9, 14171–14179.

[33]

Tang, X. H.; Tang, Y.; Wang, Y.; Weng, Y. X.; Wang, M. Interfacial metallization in segregated poly (lactic acid)/poly (ε-caprolactone)/multi-walled carbon nanotubes composites for enhancing electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2020, 139, 106116.

[34]

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon. 2021, 177, 377–402.

[35]

He, Q. M.; Tao, J. R.; Yang, Y.; Yang, D.; Zhang, K.; Wang, M. Effect surface micro-wrinkles and micro-cracks on microwave shielding performance of copper-coated carbon nanotubes/polydimethylsiloxane composites. Carbon. 2023, 213, 118216.

[36]

Wang, Z. Y.; Yang, W. Z.; Liu, R.; Zhang, X. L.; Nie, H. Y.; Liu, Y. Highly stretchable graphene/polydimethylsiloxane composite lattices with tailored structure for strain-tolerant EMI shielding performance. Compos. Sci. Technol. 2021, 206, 108652.

[37]

Luo, C. L.; Huang, M. L.; Sun, C.; Zhao, K. Y.; Guo, H.; Wang, M. Anisotropic electromagnetic wave shielding performance in Janus cellulose nanofiber composite films. Mater. Today Phys. 2024, 44, 101440.

[38]

Li, Y.; Sun, L.; Xu, F.; Wang, S. S.; Peng, Q. Y.; Yang, Z. Y.; He, X. D.; Li, Y. B. Electromagnetic and acoustic double-shielding graphene-based metastructures. Nanoscale. 2019, 11, 1692–1699.

[39]

Li, J. J.; Zhang, Y.; Li, X. F.; Chen, C. Y.; Zou, H. H.; Yi, P.; Liu, X. F.; Yu, R. H. Oriented magnetic liquid metal-filled interlocked bilayer films as multifunctional smart electromagnetic devices. Nano Res. 2023, 16, 1764–1772.

[40]

Verma, S.; Dhangar, M.; Mili, M.; Bajpai, H.; Dwivedi, U.; Kumari, N.; Khan, M. A.; Bhargaw, H. N.; Hashmi, S. A. R.; Srivastava, A. K. Review on engineering designing of electromagnetic interference shielding materials using additive manufacturing. Polym. Compos. 2022, 43, 4081–4099.

[41]

Pei, X. Y.; Liu, G. D.; Shao, R. Q.; Yu, R. R.; Chen, R. X.; Liu, D.; Wang, W.; Min, C. Y.; Liu, S. K.; Xu, Z. W. 3D-printing carbon nanotubes/Ti3C2T x /chitosan composites with different arrangement structures based on ball milling for EMI shielding. J. Appl. Polym. Sci. 2022, 139, e53125.

[42]

Lv, Q. N.; Tao, X. Y.; Shi, S. H.; Li, Y. J.; Chen, N. From materials to components: 3D-printed architected honeycombs toward high-performance and tunable electromagnetic interference shielding. Compos. Part B: Eng. 2022, 230, 109500.

[43]

Lee, K. P. M.; Baum, T.; Shanks, R.; Daver, F. Electromagnetic interference shielding of 3D-printed graphene-polyamide-6 composites with 3D-printed morphology. Addit. Manuf. 2021, 43, 102020.

[44]

Liu, G. D.; Yu, R. R.; Liu, D.; Xia, Y. H.; Pei, X. Y.; Wang, W.; Min, C. Y.; Liu, S. K.; Shao, R. Q.; Xu, Z. W. 3D-printed TiO2–Ti3C2T x heterojunction/rGO/PDMS composites with gradient pore size for electromagnetic interference shielding and thermal management. Compos. Part A: Appl. Sci. Manuf. 2022, 160, 107058.

[45]

Pei, X. Y.; Liu, G. D.; Shi, H. T.; Yu, R. R.; Wang, S.; Liu, S. K.; Min, C. Y.; Song, J. N.; Shao, R. Q.; Xu, Z. W. Directional electromagnetic interference shielding of asymmetric structure based on dual-needle 3D printing. Compos. Sci. Technol. 2023, 233, 109909.

[46]

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly (lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

[47]

Dai, L.; Wang, L. Q.; Chen, B. H.; Xu, Z. T.; Wang, Z. J.; Xiao, R. Shape memory behaviors of 3D printed liquid crystal elastomers. Soft Sci. 2023, 3, 5.

[48]

Wang, Y.; He, Q. M.; Gao, Y. N.; Yue, T. N.; Wang, M. Achieving remarkable enhancement on electromagnetic shielding performance in multi-walled carbon nanotube/polydimethylsiloxane composites via adding a small amount of metal micro-particles as scattering points. Compos. Part A: Appl. Sci. Manuf. 2022, 162, 107135.

[49]

Rajan, A. K.; Solaman, S.; Ganesanpotti, S. Design and fabrication of layered electromagnetic interference shielding materials: A cost-effective strategy for performance prediction and efficiency tuning. ACS Appl. Mater. Interfaces. 2023, 15, 5822–5835.

[50]

Cheng, R.; Wang, B.; Zeng, J. S.; Li, J. P.; Xu, J.; Gao, W. H.; Chen, K. F. Janus-inspired flexible cellulose nanofiber-assisted MXene/silver nanowire papers with fascinating mechanical properties for efficient electromagnetic interference shielding. Carbon. 2023, 202, 314–324.

[51]

Yazdi, S. J. M.; Lisitski, A.; Pack, S.; Hiziroglu, H. R.; Baqersad, J. Analysis of shielding effectiveness against electromagnetic interference (EMI) for metal-coated polymeric materials. Polymers. 2023, 15, 1911.

[52]

Habib, S.; Kiani, G. I.; Butt, M. F. U. A convoluted frequency selective surface for wideband communication applications. IEEE Access. 2019, 7, 65075–65082.

[53]

Liao, S. Y.; Wang, X. Y.; Li, X. M.; Wan, Y. J.; Zhao, T.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem. Eng. J. 2021, 422, 129962.

[54]

Li, T.; Li, J. Z.; Xu, Z. K.; Tian, Y. R.; Li, J. T.; Du, J. N.; Meng, F. B. Electromagnetic response of multistage-helical nano-micro conducting polymer structures and their enhanced attenuation mechanism of multiscale-chiral synergistic effect. Small. 2023, 19, 2300233.

[55]

Yao, H. M.; Yang, J. P.; Li, H.; Xu, J. C.; Bi, K. Optimal design of multilayer radar absorbing materials: A simulation-optimization approach. Adv. Compos. Hybrid Mater. 2023, 6, 43.

[56]

Zhou, Q.; Shi, T. T.; Xue, B.; Gu, S. Y.; Ren, W.; Ye, F.; Fan, X. M.; Du, L. F. Multi-scale integrated design and fabrication of ultra-broadband electromagnetic absorption utilizing multi-walled carbon nanotubes-based hierarchical metamaterial. Compos. Sci. Technol. 2023, 232, 109877.

[57]

Bai, Y. Y.; Wang, J. J.; Lu, S. W.; Huang, Z. W.; Zhang, L.; Xu, Q. G.; Xu, S. F. Ni deposited onto MWCNTs buckypapers for improved broadband EMI shielding. J. Mater. Sci.: Mater. Electron. 2018, 29, 15034–15041.

[58]

Kumar, G. S.; Vishnupriya, D.; Joshi, A.; Datar, S.; Patro, T. U. Electromagnetic interference shielding in 1–18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites. Phys. Chem. Chem. Phys. 2015, 17, 20347–20360.

[59]

Mohan, R. R.; Varma, S. J.; Faisal, M.; Jayalekshmi, S. Polyaniline/graphene hybrid film as an effective broadband electromagnetic shield. RSC Adv. 2015, 5, 5917–5923.

[60]

Fan, M. S.; Xia, X.; Li, S. H.; Zhang, R.; Wu, L.; Qu, M. J.; Tang, P.; Bin, Y. Z. Sustainable bacterial cellulose reinforced carbon nanotube buckypaper and its multifunctionality for electromagnetic interference shielding, Joule heating and humidity sensing. Chem. Eng. J. 2022, 441, 136103.

[61]

Hou, C. X.; Cheng, J. Y.; Zhang, H. B.; Lu, Z. H.; Yang, X. Y.; Zheng, G. P.; Zhang, D. Q.; Cao, M. S. Biomass-derived carbon-coated WS2 core–shell nanostructures with excellent electromagnetic absorption in C-band. Appl. Surf. Sci. 2022, 577, 151939.

[62]

Akram, S.; Aziz, H.; Imran, A.; Javid, A.; Nosheen, A.; Ashraf, M.; Xue, Z. B.; Raza, M. Fabrication of silver/polyaniline/aminated graphene oxide coated textiles for electromagnetic interference shielding application within the different bands of frequency. Synth. Met. 2023, 298, 117440.

[63]

Yang, X. F.; He, W. J.; Xu, Q.; Wang, H. P.; Xing, H. N.; Feng, J.; Zhu, X. H.; Li, X. H.; Zhang, J. W.; Zheng, X. L. Flexible and ultrathin GO@MXene sandwich-type multilayered film toward superior electromagnetic interference shielding in a wide gigahertz range of 3.95–18.0 GHz. J. Alloy. Compd. 2023, 964, 169338.

[64]

Shukla, V.; Srivastava, S. K. Reduced graphene oxide/PdNi/poly(ethylene-co-vinyl acetate) nanocomposites for electromagnetic interference shielding. Mater. Chem. Phys. 2022, 276, 125418.

[65]

Guo, Y. Q.; Wang, S. S.; Zhang, H. T.; Guo, H.; He, M. K.; Ruan, K. P.; Yu, Z.; Wang, G. S.; Qiu, H.; Gu, J. W. Consistent thermal conductivities of spring-like structured polydimethylsiloxane composites under large deformation. Adv. Mater. 2024, 36, 2404648.

[66]

Ma, Y. S.; Luo, N.; Ni, Z. Y.; Guan, R. T.; Zhang, G. R.; Wang, Y.; Chen, F. Resonant cavity structural design of carbon-based intrinsic metamaterial absorbers for broadening the effective absorption bandwidth. Chem. Eng. J. 2024, 500, 157508.

[67]
Wang, M. Biodegradable polymer-based nanocomposite foams for electromagnetic interference shielding. In Porous Nanocomposites for Electromagnetic Interference Shielding. Thomas, S.; Paoloni, C.; Pai, A. R., Eds.; Woodhead Publishing: Cambridge, 2024; pp 179–219.
[68]

Hou, X.; Feng, X. R.; Jiang, K.; Zheng, Y. C.; Liu, J. T.; Wang, M. Recent progress in smart electromagnetic interference shielding materials. J. Mater. Sci. Technol. 2024, 186, 256–271.

[69]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2T x hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

Nano Research
Article number: 94907153
Cite this article:
Jiang K, Ji ZC, Zheng YC, et al. Surface micro-arrays enhancing electromagnetic interference shielding of polydimethylsiloxane/multiwalled carbon nanotubes nanocomposites. Nano Research, 2025, 18(1): 94907153. https://doi.org/10.26599/NR.2025.94907153
Topics:

395

Views

65

Downloads

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 01 November 2024
Revised: 21 November 2024
Accepted: 24 November 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return