AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Directly imaging the in-situ chemical transformation of nickel cubane nanoclusters for promoting electrocatalytic urea-oxidation-reaction

En-Xue Liu1,§Hong-Hao Li1,§Cheng Hou1Jian-Qiang Zhao1Mohamedally Kurmoo4Yi-Jing Gao3 ( )Zheng Yin1 ( )Bin Zhang1 ( )Ming-Hua Zeng1,2 ( )
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
Institute de Chimie de Strasbourg, CNRS-UMR7177, Université de Strasbourg, 4 rue Blaise Pascal, Strasbourg 67070, France

§ En-Xue Liu and Hong-Hao Li contributed equally to this work.

Show Author Information

Graphical Abstract

In-situ modification of nanoclusters alters the direct electronic interaction between substrate and active sites in improving the catalytic performance.

Abstract

We report the stepwise in-situ manipulation of a nickel cubane nanocluster capped with a specially designed multidentate ligand [NiII4(HL)3(CH3O)(CH3OH)3](CH3COO) (Ni4, H3L = (E)-3-((2-hydroxy-3-methoxybenzylidene)amino)propane-1,2-diol) to firstly [NiII4(HL)3(CH3O)(CH3OH)2(H2O)](CH3COO) (Ni4-1 min) and finally to [NiII4(HL)3 (CH3O)(H2O)3](CH3COO) (Ni4-20 h) during the urea electrolysis. A combination of mass spectrometry, single crystallography and pair distribution function were employed to analyze the structural correlations of this catalyst in crystal/solution/gas phases for confirming the dynamic ligand replacement while preserving the cubic Ni4 core during catalysis. The key feature of their structures is that: (i) three ligands wrap the Ni4O4 cubane center on one side forming the rounded outside of a calix; (ii) the opposite flat side containing labile methanol as the active site. This structure facilitates the binding of the substrate to the active central nickel atoms during catalysis. Furthermore, due to the different modes of packing, the structure of Ni4-20 h sustains two-dimensional (2D) net of open space while the structures of Ni4 and Ni4-1 min have only closed void inaccessible to solvent molecules or ions. Interestingly, the overpotential initially decreased (up to 45 min) until it is stabilized. The result showed a low potential of 1.32 V (urea oxidation reaction (UOR)) at 10 mA·cm−2 as reflected in the Gibbs free energy decrease of ~ 0.4 eV from Ni4 to Ni4-20 h. This work demonstrates a convincing approach for elucidating the exact nature of the active clusters in electrocatalytic process, and confirms that in-situ modification of electrode materials might alter the direct electronic interaction between substrate and active sites in improving the catalytic performance.

Electronic Supplementary Material

Download File(s)
7152_ESM.pdf (4.8 MB)

References

[1]

He, Y. Z.; Liu, S. S.; Wang, M. F.; Cheng, Q. Y.; Ji, H. Q.; Qian, T.; Yan, C. L. Advanced in situ characterization techniques for direct observation of gas-involved electrochemical reactions. Energy Environ. Mater. 2023, 6, e12552.

[2]

Zhao, J. Y.; Lian, J.; Zhao, Z. X.; Wang, X. M.; Zhang, J. J. A review of in-situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nano-Micro Lett. 2023, 15, 19.

[3]

Chen, Z. K.; Fan, Q. Q.; Zhou, J.; Wang, X. K.; Huang, M. H.; Jiang, H. Q.; Cölfen, H. Toward understanding the formation mechanism and OER catalytic mechanism of hydroxides by in situ and operando techniques. Angew. Chem., Int. Ed. 2023, 62, e202309293.

[4]

Li, X. N.; Yang, X. F.; Zhang, J. M.; Huang, Y. Q.; Liu, B. In situ/ operando techniques for characterization of single-atom catalysts. ACS Catal. 2019, 9, 2521–2531.

[5]

Zhao, Y. G.; Adiyeri Saseendran, D. P.; Huang, C.; Triana, C. A.; Marks, W. R.; Chen, H.; Zhao, H.; Patzke, G. R. Oxygen evolution/reduction reaction catalysts: From in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 2023, 123, 6257–6358.

[6]

Jing, C.; Yuan, T. T.; Li, L. L.; Li, J. F.; Qian, Z. X.; Zhou, J.; Wang, Y. F.; Xi, S. B.; Zhang, N.; Lin, H. J. et al. Electrocatalyst with dynamic formation of the dual-active site from the dual pathway observed by in situ Raman spectroscopy. ACS Catal. 2022, 12, 10276–10284.

[7]

Yoo, R. M. S.; Yesudoss, D.; Johnson, D.; Djire, A. A review on the application of in-situ Raman spectroelectrochemistry to understand the mechanisms of hydrogen evolution reaction. ACS Catal. 2023, 13, 10570–10601.

[8]
Zhang, H. Y.; Gu, C. Y.; Fan, M. H.; Zhao, Z.; Kong, X. D.; Geng, Z. G. Applications of in-situ spectroscopic techniques towards CO2 electroreduction. Sci. China Chem. 2024 , in press, DOI: 10.1007/s11426-024-2113-7.
[9]

Heidari, S. M.; Balaghi, S. E.; Sologubenko, A. S.; Patzke, G. R. Economic manganese-oxide-based anodes for efficient water oxidation: Rapid synthesis and in situ transmission electron microscopy monitoring. ACS Catal. 2021, 11, 2511–2523.

[10]

Ma, X. C.; Dong, D. R.; Guo, S. Q.; Cheng, N. Y.; Zhang, B. W.; Ge, B. H. In situ transmission electron microscopy for sodium batteries. Adv. Funct. Mater. 2024, 34, 2400779.

[11]

Sun, Z. F.; Pan, J. H.; Chen, W. W.; Chen, H. Y.; Zhou, S. H.; Wu, X. Y.; Wang, Y. S.; Kim, K.; Li, J.; Liu, H. D. et al. Electrochemical processes and reactions in rechargeable battery materials revealed via in situ transmission electron microscopy. Adv. Energy Mater. 2024, 14, 2303165.

[12]

Barawi, M.; Mesa, C. A.; Collado, L.; Villar-García, I. J.; Oropeza, F.; de la Peña O’Shea, V. A.; García-Tecedor, M. Latest advances in situ and operando X-ray-based techniques for the characterisation of photoelectrocatalytic systems. J. Mater. Chem. A 2024, 12, 23125–23146.

[13]

Chetyrin, I. A.; Bukhtiyarov, A. V.; Prosvirin, I. P.; Bukhtiyarov, V. I. Investigation of concentration hysteresis in methane oxidation on bimetallic Pt–Pd/Al2O3 catalyst by in situ XPS and mass spectrometry. Mendeleev Commun. 2021, 31, 635–637.

[14]

Guo, X.; Fan, L. L.; Liu, Y. F.; Jin, Z. L. In situ XPS confirmed the efficient charge transfer of the CdS/GDY/ZnMoO4 heterojunction based on graphdiyne(C n H2 n −2) for photocatalytic hydrogen production. Renew. Energy 2024, 222, 119877.

[15]

Man, R. W. Y.; Yi, H.; Malola, S.; Takano, S.; Tsukuda, T.; Häkkinen, H.; Nambo, M.; Crudden, C. M. Synthesis and characterization of enantiopure chiral bis NHC-stabilized edge-shared Au10-nanocluster with unique prolate shape. J. Am. Chem. Soc. 2022, 144, 2056–2061.

[16]

Ruan, W. J.; Gao, Y.; Lin, J. H.; Fang, X. K. Polyoxometalate-dicarboxylate hybrid dimers with {SiW10Cr2} nodes: Syntheses, structures, and mass spectrometric characterization. Inorg. Chem. 2024, 63, 12399–12403.

[17]

Wang, Z.; Su, H. F.; Zhang, L. P.; Dou, J. M.; Tung, C. H.; Sun, D.; Zheng, L. S. Stepwise assembly of Ag42 nanocalices based on a MoVI-anchored thiacalix[4]arene metalloligand. ACS Nano 2022, 16, 4500–4507.

[18]

Hu, Y. Q.; Zeng, M. H.; Zhang, K.; Hu, S.; Zhou, F. F.; Kurmoo, M. Tracking the formation of a polynuclear Co16 complex and its elimination and substitution reactions by mass spectroscopy and crystallography. J. Am. Chem. Soc. 2013, 135, 7901–7908.

[19]

Zeng, M. H.; Yin, Z.; Liu, Z. H.; Xu, H. B.; Feng, Y. C.; Hu, Y. Q.; Chang, L. X.; Zhang, Y. X.; Huang, J.; Kurmoo, M. Assembly of a highly stable luminescent Zn5 cluster and application to bio-imaging. Angew. Chem., Int. Ed. 2016, 55, 11407–11411.

[20]

Liu, B.; Yu, F.; Tu, M.; Zhu, Z. H.; Zhang, Y. K.; Ouyang, Z. W.; Wang, Z.; Zeng, M. H. Tracking the process of a solvothermal domino reaction leading to a stable triheteroarylmethyl radical: A combined crystallographic and mass-spectrometric study. Angew. Chem., Int. Ed. 2019, 58, 3748–3753.

[21]

Zhou, Y. L.; Zeng, M. H.; Wei, L. Q.; Li, B. W.; Kurmoo, M. Traditional and microwave-assisted solvothermal synthesis and surface modification of Co7 brucite disk clusters and their magnetic properties. Chem. Mater. 2010, 22, 4295–4303.

[22]

Cai, X.; Li, G. J.; Hu, W. G.; Zhu, Y. Catalytic conversion of CO2 over atomically precise gold-based cluster catalysts. ACS Catal. 2022, 12, 10638–10653.

[23]

Li, S.; Li, N. N.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Chemical flexibility of atomically precise metal clusters. Chem. Rev. 2024, 124, 7262–7378.

[24]

Jiang, Z. G.; Zeng, H. M.; Zhang, X. Y.; Tan, Y.; Lan, Y. Z.; Wang, Y.; Long, D. L.; Cronin, L.; Zhan, C. H. A synergistic {Cu2-W12O40} catalyst with high conversion for homo-coupling of terminal alkynes. Inorg. Chem. Front. 2023, 10, 1255–1261.

[25]

Wang, X. N.; Zhao, L. M.; Li, X. J.; Liu, Y.; Wang, Y. S.; Yao, Q. F.; Xie, J. P.; Xue, Q. Z.; Yan, Z. F.; Yuan, X. et al. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 2022, 13, 1596.

[26]

Mitsuka, Y.; Ogiwara, N.; Mukoyoshi, M.; Kitagawa, H.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Haneda, M.; Kawaguchi, S.; Kubota, Y. et al. Fabrication of integrated copper-based nanoparticles/amorphous metal-organic framework by a facile spray-drying method: Highly enhanced CO2 hydrogenation activity for methanol synthesis. Angew. Chem., Int. Ed. 2021, 60, 22283–22288.

[27]

Zhang, B. X.; Chen, Y. P.; Wang, J. M.; Pan, H. G.; Sun, W. P. Supported sub-nanometer clusters for electrocatalysis applications. Adv. Funct. Mater. 2022, 32, 2202227.

[28]

Xu, S. Y.; Shi, W. X.; Huang, J. R.; Yao, S.; Wang, C.; Lu, T. B.; Zhang, Z. M. Single-cluster functionalized TiO2 nanotube array for boosting water oxidation and CO2 photoreduction to CH3OH. Angew. Chem., Int. Ed. 2024, 63, e202406223.

[29]

Yang, Y.; Guo, S.; Zhang, Q.; Guan, Z. J.; Wang, Q. M. A cages-on-cluster structure constructed by post-clustering covalent modifications and guest-enabled stimuli-responsive luminescence. Angew. Chem., Int. Ed. 2024, 63, e202404798.

[30]

Pan, Z. H.; Weng, Z. Z.; Kong, X. J.; Long, L. S.; Zheng, L. S. Lanthanide-containing clusters for catalytic water splitting and CO2 conversion. Coord. Chem. Rev. 2022, 457, 214419.

[31]

Chen, J. N.; Pan, Z. H.; Qiu, Q. H.; Wang, C.; Long, L. S.; Zheng, L. S.; Kong, X. J. Soluble Gd6Cu24 clusters: Effective molecular electrocatalysts for water oxidation. Chem. Sci. 2024, 15, 511–515.

[32]

Jirasek, M.; Sharma, A.; Bame, J. R.; Mehr, S. H. M.; Bell, N.; Marshall, S. M.; Mathis, C.; MacLeod, A.; Cooper, G. J. T.; Swart, M. et al. Investigating and quantifying molecular complexity using assembly theory and spectroscopy. ACS Cent. Sci. 2024, 10, 1054–1064.

[33]

Sheng, K.; Wang, Z.; Li, L.; Gao, Z. Y.; Tung, C. H.; Sun, D. Solvent-mediated separation and reversible transformation of 1D supramolecular polymorphs built from [W10O32]4− templated 48-nuclei silver(I) cluster. J. Am. Chem. Soc. 2023, 145, 10595–10603.

[34]

Wang, Z.; Li, L.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Zheng, L. S.; Sun, D. Solvent-controlled condensation of [Mo2O5(PTC4A)2]6− metalloligand in stepwise assembly of hexagonal and rectangular Ag18 nanoclusters. Angew. Chem., Int. Ed. 2022, 61, e202200823.

[35]

Wang, Z.; Qu, Q. P.; Su, H. F.; Huang, P.; Gupta, R. K.; Liu, Q. Y.; Tung, C. H.; Sun, D.; Zheng, L. S. A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Sci. China Chem. 2020, 63, 16–20.

[36]

Wang, Z.; Su, H. F.; Tan, Y. Z.; Schein, S.; Lin, S. C.; Liu, W.; Wang, S. A.; Wang, W. G.; Tung, C. H.; Sun, D. et al. Assembly of silver Trigons into a buckyball-like Ag180 nanocage. Proc. Natl. Acad. Sci. USA 2017, 114, 12132–12137.

[37]

Wang, Z.; Zhu, Y. J.; Li, Y. Z.; Zhuang, G. L.; Song, K. P.; Gao, Z. Y.; Dou, J. M.; Kurmoo, M.; Tung, C. H.; Sun, D. Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines. Nat. Commun. 2022, 13, 1802.

[38]

Zheng, H. L.; Chen, X. L.; Li, T.; Yin, Z.; Zhang, Y. X.; Kurmoo, M.; Zeng, M. H. Manipulating clusters by use of competing N,O-chelating ligands: A combined crystallographic, mass spectrometric, and DFT study. Chem.—Eur. J. 2018, 24, 7906–7912.

[39]

Zhang, Y. Y.; Zhang, D. S.; Li, T.; Kurmoo, M.; Zeng, M. H. In situ metal-assisted ligand modification induces Mn4 cluster-to-cluster transformation: A crystallography, mass spectrometry, and DFT study. Chem.—Eur. J. 2020, 26, 721–728.

[40]

Jiang, X.; Li, J.; Yang, B.; Wei, X. Z.; Dong, B. W.; Kao, Y.; Huang, M. Y.; Tung, C. H.; Wu, L. Z. A bio-inspired Cu4O4 cubane: Effective molecular catalysts for electrocatalytic water oxidation in aqueous solution. Angew. Chem., Int. Ed. 2018, 57, 7850–7854.

[41]

Kim, Y.; Sridharan, A.; Suess, D. L. M. The elusive mononitrosylated [Fe4S4] cluster in three redox states. Angew. Chem., Int. Ed. 2022, 61, e202213032.

[42]

Olshansky, L.; Huerta-Lavorie, R.; Nguyen, A. I.; Vallapurackal, J.; Furst, A.; Tilley, T. D.; Borovik, A. S. Artificial metalloproteins containing Co4O4 cubane active sites. J. Am. Chem. Soc. 2018, 140, 2739–2742.

[43]

Song, F. Y.; Moré, R.; Schilling, M.; Smolentsev, G.; Azzaroli, N.; Fox, T.; Luber, S.; Patzke, G. R. {Co4O4} and Co x Ni4− x O4 cubane water oxidation catalysts as surface cut-outs of cobalt oxides. J. Am. Chem. Soc. 2017, 139, 14198–14208.

[44]

Zeng, M. H.; Yao, M. X.; Liang, H.; Zhang, W. X.; Chen, X. M. A single-molecule-magnetic, cubane-based, triangular Co12 supercluster. Angew. Chem., Int. Ed. 2007, 46, 1832–1835.

[45]

Ma, X. F.; Wang, Z. X.; Chen, X. L.; Kurmoo, M.; Zeng, M. H. Ligand effect on the single-molecule magnetism of tetranuclear Co(II) cubane. Inorg. Chem. 2017, 56, 15178–15186.

[46]

Zhang, C. X.; Chen, C. H.; Dong, H. X.; Shen, J. R.; Dau, H.; Zhao, J. Q. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 2015, 348, 690–693.

[47]

Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.; Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J. M.; Reijerse, E.; Lubitz, W. et al. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 2013, 499, 66–69.

[48]

Gao, X. T.; Zhang, S.; Wang, P. T.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Urea catalytic oxidation for energy and environmental applications. Chem. Soc. Rev. 2024, 53, 1552–1591.

[49]

Huang, C. J.; Xu, H. M.; Shuai, T. Y.; Zhan, Q. N.; Zhang, Z. J.; Li, G. R. Modulation strategies for the preparation of high-performance catalysts for urea oxidation reaction and their applications. Small 2023, 19, e2301130.

[50]

Xu, S.; Ruan, X. W.; Ganesan, M.; Wu, J. D.; Ravi, S. K.; Cui, X. Q. Transition metal-based catalysts for urea oxidation reaction (UOR): Catalyst design strategies, applications, and future perspectives. Adv. Funct. Mater. 2024, 34, 2313309.

[51]

Zhang, X.; Zhao, K.; Peng, X.; Kurmoo, M.; Zeng, M.H. In-situ evolution process understanding from a salan-ligated manganese cluster to supercapacitive application. Nano Res. 2022, 15, 346–351.

[52]

Wang, Y. F.; Liang, Y. Y.; Wu, Y. F.; Yang, J.; Zhang, X.; Cai, D. D.; Peng, X.; Kurmoo, M.; Zeng, M. H. In situ pyrolysis tracking and real-time phase evolution: From a binary zinc cluster to supercapacitive porous carbon. Angew. Chem. , Int. Ed. 2020, 59, 13232–13237.

[53]

Long, B. J.; Cao, P. Y.; Zhao, Y. M.; Fu, Q. Q.; Mo, Y.; Zhai, Y. M.; Liu, J. J.; Lyu, X.; Li, T.; Guo, X. F. et al. Pt1/Ni6Co1 layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping. Nano Res. 2023, 16, 318–324.

[54]

Li, T.; Wang, Y. F.; Yin, Z.; Li, J.; Peng, X.; Zeng, M. H. The sequential structural transformation of a heptanuclear zinc cluster towards hierarchical porous carbon for supercapacitor applications. Chem. Sci. 2022, 13, 10786–10791.

[55]

Zhao, J. Q.; Cai, D. D.; Dai, J.; Kurmoo, M.; Peng, X.; Zeng, M. H. Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient oxygen evolution electrode. Sci. Bull. 2019, 64, 1667–1674.

[56]

Yu, Y. D.; Mu, Z.; Jin, B.; Liu, Z. M.; Tang, R. K. Organic–inorganic copolymerization for a homogenous composite without an interphase boundary. Angew. Chem., Int. Ed. 2020, 59, 2071–2075.

[57]

O’Mullane, A. P. From single crystal surfaces to single atoms: Investigating active sites in electrocatalysis. Nanoscale 2014, 6, 4012–4026.

[58]

Senthilkumar, N.; Gnana Kumar, G.; Manthiram, A. 3D hierarchical core–shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells. Adv. Energy Mater. 2018, 8, 1702207.

[59]

Qin, H. Y.; Ye, Y. K.; Li, J. H.; Jia, W. Q.; Zheng, S. Y.; Cao, X. J.; Lin, G. L.; Jiao, L. F. Synergistic engineering of doping and vacancy in Ni(OH)2 to boost urea electrooxidation. Adv. Funct. Mater. 2023, 33, 2209698.

[60]

Zhang, B. J.; Pan, C. T.; Liu, H. J.; Wu, X. S.; Jiang, H. J.; Yang, L.; Qi, Z. M.; Li, G.; Shan, L.; Lin, Y. X. et al. Achieving high-efficient urea oxidation via regulating the rate-determining step over a V single atom incorporated Co hydroxide electrocatalyst. Chem. Eng. J. 2022, 439, 135768.

[61]

Zhang, L. S.; Wang, L. P.; Lin, H. P.; Liu, Y. X.; Ye, J. Y.; Wen, Y. Z.; Chen, A.; Wang, L.; Ni, F. L.; Zhou, Z. Y. et al. A lattice-oxygen-involved reaction pathway to boost urea oxidation. Angew. Chem., Int. Ed. 2019, 58, 16820–16825.

[62]

Zhu, D. D.; Zhang, H. Y.; Miao, J. H.; Hu, F.; X. Wang, L. ; Tang, Y. J.; Qiao, M.; Guo, C. X. Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction. J. Mater. Chem. A 2022, 10, 3296–3313.

Nano Research
Article number: 94907152
Cite this article:
Liu E-X, Li H-H, Hou C, et al. Directly imaging the in-situ chemical transformation of nickel cubane nanoclusters for promoting electrocatalytic urea-oxidation-reaction. Nano Research, 2025, 18(2): 94907152. https://doi.org/10.26599/NR.2025.94907152
Topics:

527

Views

142

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 October 2024
Revised: 21 November 2024
Accepted: 23 November 2024
Published: 07 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return