AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Multilayer core–shell structured FeNi3@C with enhanced interfacial polarization for microwave absorbers

Shaohan Guo1Junying Zhang2 ( )Chengyou Lin1Jin Ge3Song Bi4Zhi-Ling Hou2 ( )
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
National Key Laboratory of Electromagnetic Information Control and Effects, Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
501 Department, Xi’an Research Institute of High-Tech, Xi’an 710025, China
Show Author Information

Graphical Abstract

FeNi3@C composite with a core‒shell structure was constructed by hierarchical interface engineering. The effective absorption bandwidth of FeNi3@C reaches 7.4 GHz with a thickness of only 1.6 mm.

Abstract

Magnetoelectric composites can achieve magneto-electric synergy to optimize impedance matching. However, it is challenging to enhance the broadband absorption performance for thin thickness absorbers. Herein, FeNi3@C composite with magnetic alloy core and N-doped macroporous multilevel layered carbon shell was constructed by hierarchical interface engineering. The uniform multilevel layered carbon shell could induce interfacial polarization and multiple scattering, and further endows enhanced electromagnetic attenuation and optimized impedance matching. An ultra-thin broadband absorber with an effective absorption bandwidth of 7.4 GHz is achieved at a thickness of only 1.6 mm. Moreover, full-band absorption from 2 to 18 GHz at a thickness of 9.8 mm is realized through metastructure design. This work provides an alternative strategy to prepare core–shell structured magnetoelectric composites for ultra-thin and broadband absorbers.

Electronic Supplementary Material

Download File(s)
7151_ESM.pdf (2.2 MB)

References

[1]

Chen, G.; Liang, H. S.; Yun, J. J.; Zhang, L. M.; Wu, H. J.; Wang, J. Y. Ultrasonic field induces better crystallinity and abundant defects at grain boundaries to develop CuS electromagnetic wave absorber. Adv. Mater. 2023, 35, 2305586.

[2]
He, M. K.; Zhong, X.; Lu, X. H.; Hu, J. W.; Ruan, K. P.; Guo, H.; Zhang, Y. L.; Guo, Y. Q.; Gu, J. W. Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater., in press, DOI: 10.1002/adma.202410186.
[3]

Tang, Z. M.; Xu, L.; Xie, C.; Guo, L. R.; Zhang, L. B.; Guo, S. H.; Peng, J. H. Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 2023, 14, 5951.

[4]

Qiu, Z. R.; Liu, X. Y.; Yang, T. Y.; Wang, J. B.; Wang, Y.; Ma, W. L.; Huang, Y. Synergistic enhancement of electromagnetic wave absorption and corrosion resistance properties of high entropy alloy through lattice distortion engineering. Adv. Funct. Mater. 2024, 34, 2400220.

[5]

Meng, Y. X.; Zhang, Z.; Wang, X.; Hou, X. G.; Wang, T.; Guo, X. Q.; Liu, X. Q.; Tian, M. W.; Qu, L. J.; Wang, L. L. et al. Flexible, superhydrophobic, and self-cleaning rGO/LDH/PPy-modified fabric for full X-band electromagnetic wave absorption. Compos. B: Eng. 2024, 282, 111572.

[6]

Zhang, X.; Tian, X. L.; Qin, Y. T.; Qiao, J.; Pan, F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Liu, W.; Cui, J. et al. Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 2023, 17, 12510–12518.

[7]

Feng, S. X.; Wang, H. W.; Ma, J.; Lin, Z. T.; Wang, C. J.; Li, X.; Ma, M. L.; Li, T. X.; Ma, Y. Fabrication of hollow Ni/NiO/C/MnO2@polypyrrole core–shell structures for high-performance electromagnetic wave absorption. Compos. B: Eng. 2024, 275, 111344.

[8]

Liu, Y.; Ren, X. Y.; Zhou, X. F.; Lan, D.; Gao, Z. G.; Jia, Z. R.; Wu, G. L. Defect design and vacancy engineering of NiCo2Se4 spinel composite for excellent electromagnetic wave absorption. Ceram. Int. 2024, 50, 46643–46652.

[9]

Duan, Y. P.; Ma, B.; Huang, L. X.; Ma, X. R.; Wang, M. Moth-eye-inspired gradient impedance microwave absorption materials with multiband compatible stealth characteristic. Adv. Mater. Technol. 2023, 8, 2202172.

[10]

Kumar, N.; Kuanr, B. K. Single and double-layered Tri-band microwave absorbing materials. Ceram. Int. 2023, 49, 32458–32469.

[11]

Ma, J. H.; Luo, Z. T.; Tan, S. J.; He, J. H.; Guan, X. M.; Xu, T.; Guo, S. N.; Ji, G. B. Achieving the low emissivity of graphene oxide based film for micron-level electromagnetic waves stealth application. Carbon 2024, 218, 118771.

[12]

Gao, Z. G.; Iqbal, A.; Hassan, T.; Hui, S. C.; Wu, H. J.; Koo, C. M. Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. 2024, 36, 2311411.

[13]

Zhang, H. B.; Cheng, J. Y.; Wang, H. H.; Huang, Z. H.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Che, R. C.; Cao, M. S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 2022, 32, 2108194.

[14]

Hou, Z. L.; Gao, X. S.; Zhang, J. Y.; Wang, G. S. A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing. Carbon 2024, 222, 118935.

[15]

Jia, Y. J.; Wu, X. P.; Ren, B.; Ti, J.; Deng, Y. M.; Wang, Q.; Li, H. J. Electromagnetic wave absorption of polymer derived ceramic composites tuned by multi-component oxide solid solution. Compos. B: Eng. 2024, 278, 111431.

[16]

Lu, J. L.; Zhang, X. Q.; Liu, D. D.; Wang, L. X.; Yan, X.; Wei, C. C.; Wang, Y. S.; Huang, X. X.; Wen, G. W. Review of dielectric carbide, oxide, and sulfide nanostructures for electromagnetic wave absorption. ACS Appl. Nano Mater. 2023, 6, 15347–15366.

[17]

Zhang, L. L.; Liu, Y. X.; Rehman, S. U.; Wang, L.; Chen, Y.; Long, F. L.; Shen, S. Q.; Chen, C. C.; Liang, T. X. In situ synthesis of Fe3O4 coated on iron-based magnetic microwave absorbing materials and the influence of oxide magnetic materials on microwave absorption mechanism. Ceram. Int. 2023, 49, 12972–12979.

[18]

Jing, X. D.; Li, Z. G.; Chen, Z. T.; Li, Z. Y.; Qin, C. Y.; Gong, H. Y. Effect of praseodymium valence change on the structure, magnetic, and microwave absorbing properties of M-type strontium ferrite: The mechanism of influence of citric acid dosage and calcination temperature. Mater. Today Chem. 2023, 30, 101537.

[19]

Liu, C.; Lin, J. P.; Wu, N.; Weng, C. X.; Han, M. R.; Liu, W.; Liu, J. R.; Zeng, Z. H. Perspectives for electromagnetic wave absorption with graphene. Carbon 2024, 223, 119017.

[20]

Younes, A.; Kherrouba, N. Eddy current and magnetic evaluation of nanostructured iron-cobalt produced by ball-milling. Emerging Mater. Res. 2022, 11, 268–275.

[21]

Abada, A.; Younes, A. Microstructural and eddy current evaluation of ball-milled nanostructured aluminum-titanium alloys. Trans. Indian Inst. Met. 2024, 77, 513–521.

[22]

Zhou, K. X.; Sun, B. R.; Liu, G. Y.; Li, X. W.; Xin, S. W.; Liaw, P. K.; Shen, T. D. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism. Intermetallics 2020, 122, 106801.

[23]

Cheng, Y.; Zhou, K.; Ma, Y. Z.; Zhao, H. Q.; Yang, H. B. Microstructure design of magnetic-dielectric MCHS@Co@CNTs composites with tunable conductive loss for high-performance microwave absorption. J. Alloys Compd. 2024, 980, 173641.

[24]

Yang, Y.; Cheng, J.; Pan, F.; Lu, S. D.; Wang, X.; Cai, L.; Guo, H. T.; Jiang, H. J.; Li, L. X.; Wang, J. L. et al. Phragmites-derived magnetic carbon fiber with hollow assembly architecture toward full-covered effective bandwidth at Ku band. Carbon 2023, 213, 118228.

[25]

He, Z. Z.; Sun, R.; Xu, H. X.; Geng, W. C.; Liu, P. B. Metal-organic-frameworks derived hollow carbon derivatives: Controllable configurations and optimized microwave absorption. Carbon 2024, 219, 118853.

[26]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[27]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[28]

Song, X. H.; Lu, X. J.; Zhao, H.; Zheng, H. Study on large-scale spatial dynamic absorption of Fe3O4@SiO2 shell-core and nano-Fe3O4 magnetic particles. ACS Appl. Electron. Mater. 2021, 3, 5066–5076.

[29]

Xiao, Q. N.; Fu, H. Q.; Zeng, G. X.; Zhang, H. Y.; Zhang, K. C.; Zhao, Y. H.; Zhong, Y. F.; Wu, Q. B. Enhancement of low-frequency microwave absorption in TiO2@Fe-based amorphous alloy composite powders. J. Mater. Sci.: Mater. Electron. 2024, 35, 326.

[30]

Cao, F. H.; Xu, J.; Liu, M. J.; Yan, F.; Ouyang, Q. Y.; Zhang, X. T.; Zhang, X. L.; Chen, Y. J. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 108, 1–9.

[31]

Wu, X. L.; Liu, K.; Ding, J. W.; Zheng, B. J.; Gao, F.; Qian, K.; Ma, Y. Y.; Feng, Y. M.; Chen, L.; Zhang, P. et al. Construction of Ni-based alloys decorated sucrose-derived carbon hybrid towards: Effective microwave absorption application. Adv. Compos. Hybrid Mater. 2022, 5, 2260–2270.

[32]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Wang, Y. R.; Wang, H. L.; Huang, Y.; Liu, P. B. Heteroatoms-doped carbon nanocages with enhanced dipolar and defective polarization toward light-weight microwave absorbers. Nano Res. 2022, 15, 8705–8713.

[33]

Zhu, Y. Y.; Zhou, J.; Wu, C. M.; Wang, Y. Q.; Liu, Y. Effect of annealing temperature on the magnetic and microwave absorption of FeNi alloy. J. Magn. Magn. Mater. 2023, 570, 170535.

[34]

Zhang, L. L.; Zhang, W. M.; Rehman, S. U.; Shen, S. Q.; Liu, Y. X.; Long, F. L.; Du, H. Z.; Dong, W. W.; Hu, Y. F.; Zou, H. P. et al. Optimization of microwave absorption properties of flaky FeSiAl magnetic alloy by surface modification. J. Alloys Compd. 2023, 949, 169756.

[35]

Liu, Z.; Wang, B.; Wei, S. C.; Huang, W.; Wang, Y. J.; Liang, Y.; Wang, X. Y. Novel preparation of FeCo alloy/graphene foam composites for efficient microwave absorption. Carbon 2023, 215, 118452.

[36]

Xiong, X. H.; Zhang, H. B.; Lv, H. L.; Yang, L. T.; Liang, G. S.; Zhang, J. C.; Lai, Y. X.; Cheng, H. W.; Che, R. C. Recent progress in carbon-based materials and loss mechanisms for electromagnetic wave absorption. Carbon 2024, 219, 118834.

[37]

Huo, K. L.; Yang, S. H.; Zong, J. Y.; Chu, J. J.; Wang, Y. D.; Cao, M. S. Carbon-based EM functional materials and multi-band microwave devices: Current progress and perspectives. Carbon 2023, 213, 118193.

[38]

Xu, H. R.; Zhao, L. L.; Liu, X. M.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Metal-organic-framework derived core–shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2006188.

[39]

Su, X. G.; Wang, J.; Liu, T.; Zhang, Y.; Liu, Y. N.; Zhang, B.; Liu, Y. Q.; Wu, H. J.; Xu, H. X. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. 2024, 34, 2403397.

[40]

Ding, C. Y.; Shao, C. S.; Wu, S. S.; Ma, Y.; Liu, Y.; Ma, S. Q.; Hu, X. S.; Cao, Z. Y.; Ren, X. Z.; Zhong, B. et al. A review of 1D carbon-based materials assembly design for lightweight microwave absorption. Carbon 2023, 213, 118279.

[41]

Liu, P. B.; Wang, Y.; Zhang, G. Z.; Huang, Y.; Zhang, R. X.; Liu, X. H.; Zhang, X. F.; Che, R. C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 2022, 32, 2202588.

[42]

Xiong, Y.; Xu, L. L.; Yang, C. X.; Sun, Q. F.; Xu, X. J. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 2020, 8, 18863–18871.

[43]

Chen, J. B.; Zheng, J.; Huang, Q. Q.; Wang, F.; Ji, G. B. Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 36182–36189.

[44]

Li, Y. L.; Gao, X. P.; Wang, M.; Gao, Y. N.; Jiang, D. L. Annealed covalent organic framework thin films for exceptional absorption of ultrabroad low-frequency electromagnetic waves. Small 2022, 18, 2205400.

[45]

Jia, Z. R.; Sun, L. F.; Gao, Z. G.; Lan, D. Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption. Nano Res. 2024, 17, 10099–10108.

[46]

Sun, C. H.; Lan, D.; Jia, Z. R.; Gao, Z. G.; Wu, G. L. Kirkendall effect-induced ternary heterointerfaces engineering for high polarization loss MOF-LDH-MXene absorbers. Small, in press, DOI: 10.1002/smll.202405874.

[47]

Guo, Z. Q.; Lan, D.; Jia, Z. R.; Gao, Z. G.; Shi, X. T.; He, M. K.; Guo, H.; Wu, G. L.; Yin, P. F. Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption. Nano-Micro Lett. 2025, 17, 23.

[48]

Han, M. J.; Lan, D.; Zhang, Z. M.; Zhao, Y. Z.; Zou, J. X.; Gao, Z. G.; Wu, G. L.; Jia, Z. R. Micro-sized hexapod-like CuS/Cu9S5 hybrid with broadband electromagnetic wave absorption. J. Mater. Sci. Technol. 2025, 214, 302–312.

[49]

Li, C. J.; Wang, X.; Liu, X. H.; Zhang, J. Y.; Bi, S.; Hou, Z. L. Broadband and strong microwave absorption combining excellent EMI shielding of VGCF/carbonyl iron composites derived from synergistic magnetic and dielectric losses. Carbon 2023, 214, 118383.

[50]

Gao, X. S.; Wang, X.; Cai, J. N.; Zhang, Y. Q.; Zhang, J. Y.; Bi, S.; Hou, Z. L. CNT cluster arrays grown on carbon fiber for excellent green EMI shielding and microwave absorbing. Carbon 2023, 211, 118083.

[51]

Lian, Y. Y.; Lan, D.; Jiang, X. D.; Wang, L.; Yan, S.; Dong, Q. Z.; Jiang, Y.; Gu, J. W.; Gao, Z. G.; Wu, G. L. Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2T X MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J. Colloid Interface Sci. 2024, 676, 217–226.

[52]

Gao, J.; Ma, Z. J.; Liu, F. L.; Weng, X. Y.; Meng, K. Y. Preparation and microwave absorption properties of Gd–Co ferrite@silica@carbon multilayer core–shell structure composites. Chem. Eng. J. 2022, 446, 137157.

[53]

Wang, L. L.; Li, N.; Zhao, T. Q.; Li, B.; Ji, Y. L. Magnetic properties of FeNi3 nanoparticle modified Pinus radiata wood nanocomposites. Polymers 2019, 11, 421.

[54]

Lu, S. Y.; Wang, S. L.; Wu, P.; Wang, D. Q.; Yi, J. C.; Li, L.; Ding, P.; Pan, H. Z. A composite prepared from covalent organic framework and gold nanoparticles for the electrochemical determination of enrofloxacin. Adv. Powder Technol. 2021, 32, 2106–2115.

[55]

Kou, X.; Zhao, Y. P.; Xu, L. J.; Kang, Z. L.; Wang, Y. C.; Zou, Z. Y.; Huang, P.; Wang, Q. F.; Su, G. H.; Yang, Y. et al. Controlled fabrication of core–shell γ–Fe2O3@C-reduced graphene oxide composites with tunable interfacial structure for highly efficient microwave absorption. J. Colloid Interface Sci. 2022, 615, 685–696.

[56]

Li, N.; Cheng, S.; Wang, B.; Zong, L. S.; Bao, Q. G.; Wu, G. S.; Hu, F. Y.; Wang, J. Y.; Liu, C.; Jian, X. G. Chemical grafting of graphene onto carbon fiber to produce composites with improved interfacial properties via sizing process: A step closer to industrial production. Compos. Sci. Technol. 2023, 231, 109822.

[57]

Tang, Z. D.; Cheng, P.; Liu, P. P.; Gao, Y.; Chen, X.; Wang, G. Tightened 1D/3D carbon heterostructure infiltrating phase change materials for solar-thermoelectric energy harvesting: Faster and better. Carbon Energy 2023, 5, e281.

[58]

Hou, Z. L.; Du, K. R.; Zhang, Y. Q.; Bi, S.; Zhang, J. Y. Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain. Nano Res. 2023, 16, 2604–2610.

[59]

Chen, N.; Dong, Z.; Wang, X. Y.; Guan, Z. J.; Jiang, J. T.; Wang, K. J. Construction of FeNi3 and core–shell structured FeNi3@C microspheres toward broadband electromagnetic wave absorbing. Appl. Surf. Sci. 2022, 603, 154337.

[60]

Zhang, S. J.; Lan, D.; Zheng, J. J.; Zhao, Z. W.; Jia, Z. R.; Wu, G. L. Insights into polarization relaxation of electromagnetic wave absorption. Cell Rep. Phys. Sci. 2024, 5, 102206.

[61]

Li, L.; Lian, S. S.; Tang, J. F.; Chen, S.; Guo, R.; Pan, S. J.; Peng, C. Superhydrophobic nanocomposites of erbium oxide and reduced graphene oxide for high-performance microwave absorption. J. Colloid Interface Sci. 2022, 615, 69–78.

[62]

Wang, B. L.; Fu, Y. G.; Li, J.; Liu, T. Yolk-shelled Co@SiO2@Mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption. J. Colloid Interface Sci. 2022, 607, 1540–1550.

[63]

Zhang, Y. Q.; Zhang, J. Y.; Wang, X.; Liu, Z. H.; Bi, S.; Hou, Z. L. Metal-organic frameworks derived carbon nanotube and carbonyl iron composite materials for broadband microwave absorbers with a wide filling range. J. Magn. Magn. Mater. 2022, 555, 169391.

[64]

Jafarian, M.; Seyyed Afghahi, S. S.; Atassi, Y.; Loriamini, A. Promoting the microwave absorption characteristics in the X band using core–shell structures of Cu metal particles/PPy and hexaferrite/PPy. J. Magn. Magn. Mater. 2020, 493, 165680.

[65]

He, P.; Hou, Z. L.; Zhang, K. L.; Li, J.; Yin, K.; Feng, S.; Bi, S. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption. J. Mater. Sci. 2017, 52, 8258–8267.

[66]

Zhao, T. B.; Lan, D.; Jia, Z. R.; Gao, Z. G.; Wu, G. L. Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res. 2024, 17, 9845–9856.

[67]

Liu, Z. L.; He, F.; Gao, F.; Ren, B. J.; Huang, Y. Fabrication and electromagnetic properties of novel FeNi alloy-coated flake graphite prepared by electroless plating. J. Alloys Compd. 2016, 656, 51–57.

[68]

Shi, C. C.; Su, Y. C.; Luo, Z. B.; Zhang, J.; Zhang, H. Z. Microwave absorption properties of spheres-assembled flake-like FeNi3 particles prepared by electrodeposition. J. Alloys Compd. 2021, 859, 157835.

[69]

Golchinvafa, S.; Masoudpanah, S. M. Magnetic and microwave absorption properties of FeNi3/NiFe2O4 composites synthesized by solution combustion method. J. Alloys Compd. 2019, 787, 390–396.

[70]

Guo, X. Y.; Wu, Z. H.; Chang, J. J.; Niu, D.; Ren, A. W.; Xu, Y. F.; Li, P.; Zhou, H. F. Boosting of electromagnetic wave absorption properties by multiple reinforcement mechanisms of metals in FeNi3/MoS2@NSAPC composites. Mater. Sci. Eng.: B 2023, 298, 116826.

[71]

He, J.; Liu, X. Y.; Deng, Y. H.; Peng, Y. H.; Deng, L. W.; Luo, H.; Cheng, C. P.; Yan, S. Q. Improved magnetic loss and impedance matching of the FeNi-decorated Ti3C2T x MXene composite toward the broadband microwave absorption performance. J. Alloys Compd. 2021, 862, 158684.

[72]

Zhao, H.; Zhu, Z. H.; Xiong, C.; Xu, X.; Lin, Q. Y. The effect of transverse magnetic field treatment on wave-absorbing properties of FeNi alloy powders. J. Magn. Magn. Mater. 2017, 422, 402–406.

[73]

Zhao, H.; Zhu, Z. H.; Xu, Y. H.; Wang, Z. Y.; Zhou, J. Design and preparation of an epoxy resin matrix composite structure with broadband wave-absorbing properties. Results Phys. 2024, 57, 107353.

[74]

Zhou, R.; Xu, Z. H.; Ma, Q. S.; Lian, S. Y.; Li, X.; Cheng, X. W. The interface charge transfer induced the expanding of effective electromagnetic wave absorption band in Ti3C2/FeNi3 composites. Mater. Today Commun. 2023, 35, 106330.

[75]

Shu, R. W.; Li, N. N.; Li, X. H.; Sun, J. J. Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness. J. Colloid Interface Sci. 2022, 606, 1918–1927.

[76]

Lv, H. P.; Wu, C.; Qin, F. X.; Peng, H. X.; Yan, M. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption. J. Mater. Sci. Technol. 2021, 90, 1–8.

[77]

Liu, R. Y.; Zhu, H. Z.; Zhu, Z. H. Construction of the sandwich magnetic FeNi@C@Fe3O4 powders with the characteristics of lower density and broadband absorption. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 652, 129778.

[78]

Feng, J.; Zong, Y.; Sun, Y.; Zhang, Y.; Yang, X.; Long, G. K.; Wang, Y.; Li, X. H.; Zheng, X. L. Optimization of porous FeNi3/N–GN composites with superior microwave absorption performance. Chem. Eng. J. 2018, 345, 441–451.

[79]

Wu, C.; Wang, H.; Luo, D. H.; Zhou, C. H.; Yan, M. Core-heteroshell FeNi3/NiFe2O4/NiSe x via facile one-step selenylation for enhanced electromagnetic performance. J. Alloys Compd. 2021, 856, 157819.

[80]

Ding, X.; Huang, Y.; Li, S. P.; Zhang, N.; Wang, J. G. FeNi3 nanoalloy decorated on 3D architecture composite of reduced graphene oxide/molybdenum disulfide giving excellent electromagnetic wave absorption properties. J. Alloys Compd. 2016, 689, 208–217.

Nano Research
Article number: 94907151
Cite this article:
Guo S, Zhang J, Lin C, et al. Multilayer core–shell structured FeNi3@C with enhanced interfacial polarization for microwave absorbers. Nano Research, 2025, 18(2): 94907151. https://doi.org/10.26599/NR.2025.94907151
Topics:

586

Views

155

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 17 October 2024
Revised: 22 November 2024
Accepted: 25 November 2024
Published: 07 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return