AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (28.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Polymerization-with-assembly enables homogeneous circularly polarized luminescence structures

Mingjiang Zhang1,§Wenting Gao1,2,§Shanshan Zhao1Taotao Zhuang1 ( )
Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
School of the Gifted Young, University of Science and Technology of China, Hefei 230026, China

§ Mingjiang Zhang and Wenting Gao contributed equally to this work.

Show Author Information

Graphical Abstract

This paper develops an in-situ helical co-assembly polymerization strategy that covalently integrates polymerizable InP-based quantum dots into chiral liquid crystal polymer templates, forming homogeneous polymeric superhelical structures with intense circularly polarized luminescence. This approach overcomes challenges of quantum dot phase separation, stability, and dispersion in chiral liquid crystal matrices, offering a novel approach to advanced circularly polarized luminescent materials for applications.

Abstract

Semiconductor quantum dots (QDs) with circularly polarized luminescence (CPL) characteristics hold significant promise for a range of applications, including information security, three-dimensional (3D) display, quantum computing, and spintronics. Recent approaches combining QDs with chiral liquid crystal assemblies have demonstrated amplified CPL performance (specifically, luminescence dissymmetry factor, glum > 10–1). However, the inherent fluidity and alignment sensitivity of chiral liquid crystals, along with QD aggregation and phase separation, continue to hinder the uniformity and long-term stability of these systems. In this work, we developed an in-situ helical co-assembly polymerization strategy that covalently incorporated InP-based QDs into chiral liquid crystal polymer templates, forming QD-based polymeric superhelical structures. We synthesized high-quality InP/ZnSeS/ZnS QDs and functionalized their surfaces with polymerizable groups to enable reactivity. By precisely tuning the photonic bandgap of the chiral liquid crystal polymers, we achieved chiral parented templates with high chiroptical activity overlapping full-visible-spectrum. Through covalent crosslinking with the QDs, a polymer network was formed, resulting in a maximum glum of 1.0. This polymerization-with-assembly approach offers exceptionally flexible and precise control over both the composition and architecture of superhelical materials, paving the way for high-quality CPL materials with broad applications in advanced technologies.

Electronic Supplementary Material

Download File(s)
7150_ESM.pdf (1.3 MB)

References

[1]

Zhang, M. J.; Guo, Q.; Li, Z. Y.; Zhou, Y. J.; Zhao, S. S.; Tong, Z.; Wang, Y. X.; Li, G. G.; Jin, S.; Zhu, M. Z. et al. Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging. Sci. Adv. 2023, 9, eadi9944.

[2]

Zhan, X. Q.; Xu, F. F.; Zhou, Z. H.; Yan, Y. L.; Yao, J. N.; Zhao, Y. S. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv. Mater. 2021, 33, 2104418.

[3]

Yang, X. F.; Gao, X. Q.; Zheng, Y. X.; Kuang, H.; Chen, C. F.; Liu, M. H.; Duan, P. F.; Tang, Z. Y. Recent progress of circularly polarized luminescence materials from Chinese perspectives. CCS Chem. 2023, 5, 2760–2789.

[4]

Gong, Z. L.; Zhu, X. F.; Zhou, Z. H.; Zhang, S. W.; Yang, D.; Zhao, B.; Zhang, Y. P.; Deng, J. P.; Cheng, Y. X.; Zheng, Y. X. et al. Frontiers in circularly polarized luminescence: Molecular design, self-assembly, nanomaterials, and applications. Sci. China Chem. 2021, 64, 2060–2104.

[5]

Cai, J. R.; Zhang, W.; Xu, L. G.; Hao, C. L.; Ma, W.; Sun, M. Z.; Wu, X. L.; Qin, X.; Colombari, F. M.; De Moura, A. F. et al. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. Nat. Nanotechnol. 2022, 17, 408–416.

[6]

Shi, B. M.; Qu, A. H.; Li, Z. D.; Xiong, Y. C.; Ji, J. J.; Xu, L. G.; Xu, C. L.; Sun, M. Z.; Kuang, H. Chiral intranasal nanovaccines as antivirals for respiratory syncytial virus. Adv. Mater. 2024, 36, e2408090.

[7]

Xu, L. G.; Wang, X. X.; Wang, W. W.; Sun, M. Z.; Choi, W. J.; Kim, J. Y.; Hao, C. L.; Li, S.; Qu, A. H.; Lu, M. R. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373.

[8]

Liu, J.; Wu, J. J.; Wei, J.; Huang, Z. J.; Zhou, X. Y.; Bao, J. Y.; Lan, R. C.; Ma, Y.; Li, B. X.; Yang, H. et al. Dynamically modulating the dissymmetry factor of circularly polarized organic ultralong room-temperature phosphorescence from soft helical superstructures. Angew. Chem., Int. Ed. 2024, 63, e202319536.

[9]

Wang, X. J.; Zhao, B.; Deng, J. P. Liquid crystals doped with chiral fluorescent polymer: Multi-color circularly polarized fluorescence and room-temperature phosphorescence with high dissymmetry factor and anti-counterfeiting application. Adv. Mater. 2023, 35, 2304405.

[10]

Yi, C. L.; Liu, H.; Zhang, S. Y.; Yang, Y. Q.; Zhang, Y.; Lu, Z. Y.; Kumacheva, E.; Nie, Z. H. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science 2020, 369, 1369–1374.

[11]

Liu, Y. Z.; Gao, X. B.; Zhao, B.; Deng, J. P. Circularly polarized luminescence in quantum dot-based materials. Nanoscale 2024, 16, 6853–6875.

[12]

Jiang, Y. Z.; Sun, C. J.; Xu, J.; Li, S. S.; Cui, M. H.; Fu, X. L.; Liu, Y.; Liu, Y. Q.; Wan, H. Y.; Wei, K. Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 2022, 612, 679–684.

[13]

Chen, Q. L.; Ding, Z. J.; Zhang, L.; Wang, D.; Geng, C.; Feng, Y. X.; Zhang, J.; Ren, M.; Li, S. S.; Qaid, S. M. H. et al. Uniaxial-oriented chiral perovskite for flexible full-stokes polarimeter. Adv. Mater. 2024, 36, 2400493.

[14]

Liu, P.; Lou, Y. J.; Ding, S. H.; Zhang, W. D.; Wu, Z. H.; Yang, H. C.; Xu, B.; Wang, K.; Sun, X. W. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453.

[15]

Zhang, X.; Xu, Y. Y.; Valenzuela, C.; Zhang, X. F.; Wang, L.; Feng, W.; Li, Q. Liquid crystal-templated chiral nanomaterials: From chiral plasmonics to circularly polarized luminescence. Light: Sci. Appl. 2022, 11, 223.

[16]

Wu, Y.; Li, M. Q.; Zheng, Z. G.; Yu, Z. Q.; Zhu, W. H. Liquid crystal assembly for ultra-dissymmetric circularly polarized luminescence and beyond. J. Am. Chem. Soc. 2023, 145, 12951–12966.

[17]

Yang, X. K.; Lv, J. W.; Zhang, J.; Shen, T. X.; Xing, T. X.; Qi, F. L.; Ma, S. H.; Gao, X. Q.; Zhang, W.; Tang, Z. Y. Tunable circularly polarized luminescence from inorganic chiral photonic crystals doped with quantum dots. Angew. Chem., Int. Ed. 2022, 61, e202201674.

[18]

Liu, J.; Song, Z. P.; Wei, J.; Wu, J. J.; Wang, M. Z.; Li, J. G.; Ma, Y.; Li, B. X.; Lu, Y. Q.; Zhao, Q. Circularly polarized organic ultralong room-temperature phosphorescence with a high dissymmetry factor in chiral helical superstructures. Adv. Mater. 2024, 36, 2306834.

[19]

Wang, H. Q.; Tang, Y. Q.; Huang, Z. Y.; Wang, F. Z.; Qiu, P. F.; Zhang, X. F.; Li, C. H.; Li, Q. A dual-responsive liquid crystal elastomer for multi-level encryption and transient information display. Angew. Chem., Int. Ed. 2023, 62, e202313728.

[20]

Fan, Q. Y.; Li, Z. Y.; Jiang, K. D.; Gao, J. J.; Lin, S. Y.; Guo, J. B. Tunable circular polarization room temperature phosphorescence with ultrahigh dissymmetric factor by cholesteric liquid crystal elastomers. Cell Rep. Phys. Sci. 2023, 4, 101583.

[21]

Zheng, Z. G.; Hu, H. L.; Zhang, Z. P.; Liu, B. H.; Li, M. Q.; Qu, D. H.; Tian, H.; Zhu, W. H.; Feringa, B. L. Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nat. Photonics 2022, 16, 226–234.

[22]

Chen, G. D.; Pei, H. W.; Zhang, X. F.; Shi, W.; Liu, M. J.; Faul, C. F. J.; Yang, B.; Zhao, Y.; Liu, K.; Lu, Z. Y. et al. Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases. Nat. Commun. 2022, 13, 5549.

[23]

Hu, H. L.; Liu, B. H.; Li, M. Q.; Zheng, Z. G.; Zhu, W. H. A quadri-dimensional manipulable laser with an intrinsic chiral photoswitch. Adv. Mater. 2022, 34, 2110170.

[24]

Shi, Y. H.; Han, J. L.; Li, C. X.; Zhao, T. H.; Jin, X.; Duan, P. F. Recyclable soft photonic crystal film with overall improved circularly polarized luminescence. Nat. Commun. 2023, 14, 6123.

[25]

Zhou, Y. J.; Wang, Y. X.; Song, Y. H.; Zhao, S. S.; Zhang, M. J.; Li, G. G.; Guo, Q.; Tong, Z.; Li, Z. Y.; Jin, S. et al. Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence. Nat. Commun. 2024, 15, 251.

[26]

Guo, Q.; Zhang, M. J.; Tong, Z.; Zhao, S. S.; Zhou, Y. J.; Wang, Y. X.; Jin, S.; Zhang, J.; Yao, H. B.; Zhu, M. Z. et al. Multimodal-responsive circularly polarized luminescence security materials. J. Am. Chem. Soc. 2023, 145, 4246–4253.

[27]

Bagchi, K.; Emeršič, T.; Martínez-González, J. A.; De Pablo, J. J.; Nealey, P. F. Functional soft materials from blue phase liquid crystals. Sci. Adv. 2023, 9, eadh9393.

[28]

Kang, W. X.; Tang, Y. Q.; Meng, X. Y.; Lin, S. Y.; Zhang, X. F.; Guo, J. B.; Li, Q. A photo- and thermo-driven azoarene-based circularly polarized luminescence molecular switch in a liquid crystal host. Angew. Chem., Int. Ed. 2023, 62, e202311486.

[29]

Liu, S. J.; Liu, X.; Wu, Y. Z.; Zhang, D. W.; Wu, Y.; Tian, H.; Zheng, Z. G.; Zhu, W. H. Circularly polarized perovskite luminescence with dissymmetry factor up to 1.9 by soft helix bilayer device. Matter 2022, 5, 2319–2333.

[30]

Zhang, X.; Li, L.; Chen, Y. H.; Valenzuela, C.; Liu, Y.; Yang, Y. Z.; Feng, Y. F.; Wang, L.; Feng, W. Mechanically tunable circularly polarized luminescence of liquid crystal-templated chiral perovskite quantum dots. Angew. Chem., Int. Ed. 2024, 63, e202404202.

[31]

Shen, X. X.; He, H. B.; Zheng, D.; Cao, W.; Sang, Y. T.; Nie, Z. H. Engineering the electrostatic interactions between oppositely charged polymer-grafted nanoparticles for constructing colloid molecules on substrates. ACS Nano 2024, 18, 20999–21008.

[32]

Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752.

[33]

Yang, X.; Valenzuela, C.; Zhang, X.; Chen, Y. H.; Yang, Y. Z.; Wang, L.; Feng, W. Robust integration of polymerizable perovskite quantum dots with responsive polymers enables 4D-printed self-deployable information display. Matter 2023, 6, 1278–1294.

[34]

Choi, S. H.; Kim, J. H.; Ahn, J.; Kim, T.; Jung, Y.; Won, D.; Bang, J.; Pyun, K. R.; Jeong, S.; Kim, H. et al. Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking. Nat. Mater. 2024, 23, 834–843.

[35]

Yin, L.; Miao, T. F.; Cheng, X. X.; Jiang, Z. C.; Tong, X.; Zhang, W.; Zhao, Y. Chiral liquid crystalline elastomer for twisting motion without preset alignment of mesogens. ACS Macro Lett. 2021, 10, 690–696.

[36]

Shi, Y. H.; Han, J. L.; Jin, X.; Miao, W. G.; Zhang, Y.; Duan, P. F. Chiral luminescent liquid crystal with multi-state-reversibility: Breakthrough in advanced anti-counterfeiting materials. Adv. Sci. 2022, 9, 2201565.

[37]

Zhang, C.; Zhao, S.; Zhang, M. M.; Li, B.; Dong, X. Y.; Zang, S. Q. Emergent induced circularly polarized luminescence in host-guest crystalline porous assemblies. Coord. Chem. Rev. 2024, 514, 215859.

[38]

Li, M. Q.; Hu, H. L.; Liu, B. H.; Liu, X.; Zheng, Z. G.; Tian, H.; Zhu, W. H. Light-reconfiguring inhomogeneous soft helical pitch with fatigue resistance and reversibility. J. Am. Chem. Soc. 2022, 144, 20773–20784.

Nano Research
Cite this article:
Zhang M, Gao W, Zhao S, et al. Polymerization-with-assembly enables homogeneous circularly polarized luminescence structures. Nano Research, 2025, https://doi.org/10.26599/NR.2025.94907150
Topics:

326

Views

64

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 September 2024
Revised: 30 October 2024
Accepted: 25 November 2024
Published: 15 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return