Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photodynamic therapy (PDT) has attracted considerable interest in tumor treatment due to its precise temporal and spatial control. However, the off-target effects of photosensitizers and the hypoxic tumor microenvironment limit the production of reactive oxygen species (ROS), reducing PDT effectiveness. To address this challenge, we utilized Escherichia coli Nissle 1917 (ECN) as host cells and employed tannate (TA) and FeCl3 in a bio-warp method to encapsulate IR775 on the surface of ECN forming TA@Fe@IR775@ECN (notes as T@I@E). At the tumor site, Fe3+ decomposes H2O2 to release O2 within the tumor microenvironment, which interacts with IR775 to increase ROS production locally. Compared to non-living drug delivery methods, T@I@E actively targets tumor cells, achieving approximately 6-fold higher accumulation of IR775 at the tumor site and alleviating tumor hypoxic to enhance PDT efficacy. The favorable biocompatibility of T@I@E further supports its potential for clinical application, establishing T@I@E as a promising candidate for tumor therapy as a living material.
Abdalla, B. M. Z.; Simas Pedreiro, B.; Garcia Morales, A.; Krutman Zveibil, D.; Paschoal, F. M. Clinical, histopathological and immunohistochemical evaluation of daylight photodynamic therapy in the treatment of field cancerization: A study of 30 cases. J. Dermatol. Treat. 2022, 33, 878–884.
Dhanalekshmi, K. I.; Sangeetha, K.; Magesan, P.; Johnson, J.; Zhang, X.; Jayamoorthy, K. Photodynamic cancer therapy: Role of Ag- and Au-based hybrid nano-photosensitizers. J. Biomol. Struct. Dyn. 2022, 40, 4766–4773.
Ferrara, F.; Bardazzi, F.; Messori, S.; Abbenante, D.; Barisani, A.; Vaccari, S. Photodynamic therapy following fractional CO2 laser for treatment of primary vulvar Paget's disease: Does it really work. J. Dermatol. Treat. 2021, 32, 800–802.
Zhou, H. G.; Qin, F. L.; Chen, C. Y. Designing hypoxia-responsive nanotheranostic agents for tumor imaging and therapy. Adv. Healthc. Mater. 2021, 10, 2001277.
Chao, Y.; Liu, Z. Biomaterials tools to modulate the tumour microenvironment in immunotherapy. Nat. Rev. Bioeng. 2023, 1, 125–138.
Xiong, W.; Qi, L.; Jiang, N.; Zhao, Q.; Chen, L. X.; Jiang, X.; Li, Y.; Zhou, Z. G.; Shen, J. L. Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy. ACS Appl. Mater. Interfaces 2021, 13, 8026–8041.
Si, L. H.; Yang, S. L.; Lin, R. X.; Gu, S. Y.; Yan, C. H.; Yan, J. SiO2-alginate-melittin nano-conjugates suppress the proliferation of ovarian cancer cells: A controlled release approach leveraging alginate lyase. Cancer Nanotechnol. 2024, 15, 4.
Zhou, Z. G.; Jiang, N.; Chen, J. S.; Zheng, C. J.; Guo, Y. Y.; Ye, R. R.; Qi, R. G.; Shen, J. L. Selectively down-regulated PD-L1 by albumin-phenformin nanoparticles mediated mitochondrial dysfunction to stimulate tumor-specific immunological response for enhanced mild-temperature photothermal efficacy. J. Nanobiotechnol. 2021, 19, 375.
Hu, Z. P.; Li, X. M.; Yuan, M.; Wang, X. Y.; Zhang, Y. P.; Wang, W.; Yuan, Z. Study on the effectiveness of ligand reversible shielding strategy in targeted delivery and tumor therapy. Acta Biomater. 2019, 83, 349–358.
Belyaeva, E. V.; Markova, A. A.; Kaluzhny, D. N.; Sigan, A. L.; Gervitz, L. L.; Ataeva, A. N.; Chkanikov, N. D.; Shtil, A. A. Novel fluorinated porphyrins sensitize tumor cells to photodamage in normoxia and hypoxia: Synthesis and biocompatible formulations. Anticancer Agents Med. Chem. 2018, 18, 617–627.
Hu, J. H.; Guan, Z. X.; Chen, J. Multifunctional biomaterials that modulate oxygen levels in the tumor microenvironment. Cancer Lett. 2021, 521, 39–49.
Li, X.; Wang, B.; Zhou, S.; Chen, W.; Chen, H. Q.; Liang, S. S.; Zheng, L. N.; Yu, H. Y.; Chu, R. X.; Wang, M. et al. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. J. Nanobiotechnol. 2020, 18, 45.
Abedi, M. H.; Yao, M. S.; Mittelstein, D. R.; Bar-Zion, A.; Swift, M. B.; Lee-Gosselin, A.; Barturen-Larrea, P.; Buss, M. T.; Shapiro, M. G. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat. Commun. 2022, 13, 1585.
Duong, M. T. Q.; Qin, Y. S.; You, S. H.; Min, J. J. Bacteria-cancer interactions: Bacteria-based cancer therapy. Exp. Mol. Med. 2019, 51, 1–15.
Li, Y.; Leng, Q. Q.; Zhang, Y.; Lin, S.; Wen, Q. L.; Lu, Y.; Xiong, K.; Shi, H.; Liu, Y. L.; Xiao, S. S. et al. Anaerobic bacteria mediated ‘smart missile’ targeting tumor hypoxic area enhances the therapeutic outcome of lung cancer. Chem. Eng. J. 2022, 438, 135566.
Huang, X. H.; Pan, J. M.; Xu, F. N.; Shao, B. F.; Wang, Y.; Guo, X.; Zhou, S. B. Bacteria-based cancer immunotherapy. Adv. Sci. 2021, 8, 2003572.
Lin, D. W.; Feng, X. L.; Mai, B. J.; Li, X.; Wang, F.; Liu, J. X.; Liu, X.; Zhang, K.; Wang, X. B. Bacterial-based cancer therapy: An emerging toolbox for targeted drug/gene delivery. Biomaterials 2021, 277, 121124.
Lou, X. Y.; Chen, Z. C.; He, Z. G.; Sun, M. C.; Sun, J. Bacteria-mediated synergistic cancer therapy: Small microbiome has a big hope. Nano-micro Lett. 2021, 13, 37.
Gurbatri, C. R.; Lia, I.; Vincent, R.; Coker, C.; Castro, S.; Treuting, P. M.; Hinchliffe, T. E.; Arpaia, N.; Danino, T. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. 2020, 12, eaax0876.
Wang, Y.; Zhou, S. K.; Wang, Y.; Lu, Z. D.; Zhang, Y.; Xu, C. F.; Wang, J. Engineering tumor-specific gene nanomedicine to recruit and activate T cells for enhanced immunotherapy. Nat. Commun. 2023, 14, 1993.
166
Views
27
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).