AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (35 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhancing the therapeutic efficacy of photodynamic therapy in colon cancer based on an ECN-mediated targeted drug delivery strategy

Kai Wang1,2,§Huihui Bian2,§Tao Ye1,§Fusheng Shang2Chenxi Zhang2Dagui Chen2Li Su2Heng Yin3 ( )Liang Zhao1 ( )
Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai 201908, China
Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi 214000, China

§ Kai Wang, Huihui Bian, and Tao Ye contributed equally to this work.

Show Author Information

Graphical Abstract

This study developed a drug delivery system based on Escherichia coli Nissle 1917 (ECN), which enhances reactive oxygen species (ROS) generation efficiency at the tumor site through Fe3+ catalysis and targeted delivery of the photosensitizer IR775, significantly improving the efficacy of photodynamic therapy for colorectal cancer.

Abstract

Photodynamic therapy (PDT) has attracted considerable interest in tumor treatment due to its precise temporal and spatial control. However, the off-target effects of photosensitizers and the hypoxic tumor microenvironment limit the production of reactive oxygen species (ROS), reducing PDT effectiveness. To address this challenge, we utilized Escherichia coli Nissle 1917 (ECN) as host cells and employed tannate (TA) and FeCl3 in a bio-warp method to encapsulate IR775 on the surface of ECN forming TA@Fe@IR775@ECN (notes as T@I@E). At the tumor site, Fe3+ decomposes H2O2 to release O2 within the tumor microenvironment, which interacts with IR775 to increase ROS production locally. Compared to non-living drug delivery methods, T@I@E actively targets tumor cells, achieving approximately 6-fold higher accumulation of IR775 at the tumor site and alleviating tumor hypoxic to enhance PDT efficacy. The favorable biocompatibility of T@I@E further supports its potential for clinical application, establishing T@I@E as a promising candidate for tumor therapy as a living material.

Electronic Supplementary Material

Download File(s)
7148_ESM.pdf (873.1 KB)

References

[1]
Stackhouse, C. T.; Gillespie, G. Y.; Willey, C. D. Cancer explant models. In Three Dimensional Human Organotypic Models for Biomedical Research. Current Topics in Microbiology and Immunology; Springer: Cham, 2019; Vol. 430, pp131–160.
[2]

Abdalla, B. M. Z.; Simas Pedreiro, B.; Garcia Morales, A.; Krutman Zveibil, D.; Paschoal, F. M. Clinical, histopathological and immunohistochemical evaluation of daylight photodynamic therapy in the treatment of field cancerization: A study of 30 cases. J. Dermatol. Treat. 2022, 33, 878–884.

[3]

Dhanalekshmi, K. I.; Sangeetha, K.; Magesan, P.; Johnson, J.; Zhang, X.; Jayamoorthy, K. Photodynamic cancer therapy: Role of Ag- and Au-based hybrid nano-photosensitizers. J. Biomol. Struct. Dyn. 2022, 40, 4766–4773.

[4]

Ferrara, F.; Bardazzi, F.; Messori, S.; Abbenante, D.; Barisani, A.; Vaccari, S. Photodynamic therapy following fractional CO2 laser for treatment of primary vulvar Paget's disease: Does it really work. J. Dermatol. Treat. 2021, 32, 800–802.

[5]

Zhou, H. G.; Qin, F. L.; Chen, C. Y. Designing hypoxia-responsive nanotheranostic agents for tumor imaging and therapy. Adv. Healthc. Mater. 2021, 10, 2001277.

[6]

Chao, Y.; Liu, Z. Biomaterials tools to modulate the tumour microenvironment in immunotherapy. Nat. Rev. Bioeng. 2023, 1, 125–138.

[7]

Xiong, W.; Qi, L.; Jiang, N.; Zhao, Q.; Chen, L. X.; Jiang, X.; Li, Y.; Zhou, Z. G.; Shen, J. L. Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy. ACS Appl. Mater. Interfaces 2021, 13, 8026–8041.

[8]

Si, L. H.; Yang, S. L.; Lin, R. X.; Gu, S. Y.; Yan, C. H.; Yan, J. SiO2-alginate-melittin nano-conjugates suppress the proliferation of ovarian cancer cells: A controlled release approach leveraging alginate lyase. Cancer Nanotechnol. 2024, 15, 4.

[9]

Zhou, Z. G.; Jiang, N.; Chen, J. S.; Zheng, C. J.; Guo, Y. Y.; Ye, R. R.; Qi, R. G.; Shen, J. L. Selectively down-regulated PD-L1 by albumin-phenformin nanoparticles mediated mitochondrial dysfunction to stimulate tumor-specific immunological response for enhanced mild-temperature photothermal efficacy. J. Nanobiotechnol. 2021, 19, 375.

[10]

Hu, Z. P.; Li, X. M.; Yuan, M.; Wang, X. Y.; Zhang, Y. P.; Wang, W.; Yuan, Z. Study on the effectiveness of ligand reversible shielding strategy in targeted delivery and tumor therapy. Acta Biomater. 2019, 83, 349–358.

[11]

Belyaeva, E. V.; Markova, A. A.; Kaluzhny, D. N.; Sigan, A. L.; Gervitz, L. L.; Ataeva, A. N.; Chkanikov, N. D.; Shtil, A. A. Novel fluorinated porphyrins sensitize tumor cells to photodamage in normoxia and hypoxia: Synthesis and biocompatible formulations. Anticancer Agents Med. Chem. 2018, 18, 617–627.

[12]

Hu, J. H.; Guan, Z. X.; Chen, J. Multifunctional biomaterials that modulate oxygen levels in the tumor microenvironment. Cancer Lett. 2021, 521, 39–49.

[13]

Li, X.; Wang, B.; Zhou, S.; Chen, W.; Chen, H. Q.; Liang, S. S.; Zheng, L. N.; Yu, H. Y.; Chu, R. X.; Wang, M. et al. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. J. Nanobiotechnol. 2020, 18, 45.

[14]

Abedi, M. H.; Yao, M. S.; Mittelstein, D. R.; Bar-Zion, A.; Swift, M. B.; Lee-Gosselin, A.; Barturen-Larrea, P.; Buss, M. T.; Shapiro, M. G. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat. Commun. 2022, 13, 1585.

[15]

Duong, M. T. Q.; Qin, Y. S.; You, S. H.; Min, J. J. Bacteria-cancer interactions: Bacteria-based cancer therapy. Exp. Mol. Med. 2019, 51, 1–15.

[16]

Li, Y.; Leng, Q. Q.; Zhang, Y.; Lin, S.; Wen, Q. L.; Lu, Y.; Xiong, K.; Shi, H.; Liu, Y. L.; Xiao, S. S. et al. Anaerobic bacteria mediated ‘smart missile’ targeting tumor hypoxic area enhances the therapeutic outcome of lung cancer. Chem. Eng. J. 2022, 438, 135566.

[17]

Huang, X. H.; Pan, J. M.; Xu, F. N.; Shao, B. F.; Wang, Y.; Guo, X.; Zhou, S. B. Bacteria-based cancer immunotherapy. Adv. Sci. 2021, 8, 2003572.

[18]

Lin, D. W.; Feng, X. L.; Mai, B. J.; Li, X.; Wang, F.; Liu, J. X.; Liu, X.; Zhang, K.; Wang, X. B. Bacterial-based cancer therapy: An emerging toolbox for targeted drug/gene delivery. Biomaterials 2021, 277, 121124.

[19]

Lou, X. Y.; Chen, Z. C.; He, Z. G.; Sun, M. C.; Sun, J. Bacteria-mediated synergistic cancer therapy: Small microbiome has a big hope. Nano-micro Lett. 2021, 13, 37.

[20]

Gurbatri, C. R.; Lia, I.; Vincent, R.; Coker, C.; Castro, S.; Treuting, P. M.; Hinchliffe, T. E.; Arpaia, N.; Danino, T. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. 2020, 12, eaax0876.

[21]

Wang, Y.; Zhou, S. K.; Wang, Y.; Lu, Z. D.; Zhang, Y.; Xu, C. F.; Wang, J. Engineering tumor-specific gene nanomedicine to recruit and activate T cells for enhanced immunotherapy. Nat. Commun. 2023, 14, 1993.

Nano Research
Article number: 94907148
Cite this article:
Wang K, Bian H, Ye T, et al. Enhancing the therapeutic efficacy of photodynamic therapy in colon cancer based on an ECN-mediated targeted drug delivery strategy. Nano Research, 2025, 18(3): 94907148. https://doi.org/10.26599/NR.2025.94907148

166

Views

27

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 August 2024
Revised: 04 November 2024
Accepted: 22 November 2024
Published: 18 February 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return