Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A “new” Frank-van de Merwe growth mode of Ag has been achieved using a macromolecular N-heterocyclic carbene-Ag(I) (NHC-Ag) complex. This polymer NHC-Ag acts as both a metal precursor and a capping ligand in the seed-mediated growth of Ag on gold nanorods (AuNRs). The newly deposited Ag nanospheres de-wet the lateral surface of AuNRs due to the strong capping of NHC-Ag motif, resulting in phase separated Au-Ag nanostructures with a contact angle of ~ 120°. Remarkably, this growth mode is also applicable to even homometallic systems, enabling the formation of Ag "islands" on Ag-coated AuNRs. This design principle opens alternative pathways to design colloidal nanoparticles with specific and otherwise challenging anisotropic nanostructures.
Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. 3.0.CO;2-J">Adv. Mater. 2000, 12, 693–713.
Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.
Shi, Y. F.; Lyu, Z.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.
Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453–458.
Jana, N. R.; Gearheart, L.; Murphy, C. J. Seeding growth for size control of 5‒40 nm diameter gold nanoparticles. Langmuir 2001, 17, 6782–6786.
Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.
Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.
Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.
Ling, D. S.; Hackett, M. J.; Hyeon, T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 2014, 9, 457–477.
Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.
Wang, Z. L.; Mohamed, M. B.; Link, S.; El-Sayed, M. A. Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf. Sci. 1999, 440, L809–L814.
Xia, X. H.; Zeng, J.; Zhang, Q.; Moran, C. H.; Xia, Y. N. Recent developments in shape-controlled synthesis of silver nanocrystals. J. Phys. Chem. C 2012, 116, 21647–21656.
Man, R. W. Y.; Li, C. H.; MacLean, M. W. A.; Zenkina, O. V.; Zamora, M. T.; Saunders, L. N.; Rousina-Webb, A.; Nambo, M.; Crudden, C. M. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J. Am. Chem. Soc. 2018, 140, 1576–1579.
Duan, H. Y.; Yang, T. G.; Sklyar, W.; Chen, B.; Chen, Y. L.; Hanson, L. A.; Sun, S. H.; Lin, Y.; He, J. Phenylacetylene-terminated poly(ethylene glycol) as ligands for colloidal noble metal nanoparticles: A new tool for “grafting to” approach. Nano Lett. 2024, 24, 5847–5854.
Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.
Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.
Weare, W. W.; Reed, S. M.; Warner, M. G.; Hutchison, J. E. Improved synthesis of small ( dCORE ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc. 2000, 122, 12890–12891.
Nikoobakht, B.; El-Sayed, M. A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 2001, 17, 6368–6374.
Du, L.; Nosratabad, N. A.; Jin, Z. C.; Zhang, C. Q.; Wang, S. S.; Chen, B. H.; Mattoussi, H. Luminescent quantum dots stabilized by N-heterocyclic carbene polymer ligands. J. Am. Chem. Soc. 2021, 143, 1873–1884.
Nosratabad, N. A.; Jin, Z. C.; Du, L.; Thakur, M.; Mattoussi, H. N-heterocyclic carbene-stabilized gold nanoparticles: Mono- versus multidentate ligands. Chem. Mater. 2021, 33, 921–933.
Thanneeru, S.; Ayers, K. M.; Anuganti, M.; Zhang, L.; Kumar, C. V.; Ung, G.; He, J. N-heterocyclic carbene-ended polymers as surface ligands of plasmonic metal nanoparticles. J. Mater. Chem. C 2020, 8, 2280–2288.
Kaur, G.; Thimes, R. L.; Camden, J. P.; Jenkins, D. M. Fundamentals and applications of N-heterocyclic carbene functionalized gold surfaces and nanoparticles. Chem. Commun. 2022, 58, 13188–13197.
DeJesus, J. F.; Sherman, L. M.; Yohannan, D. J.; Becca, J. C.; Strausser, S. L.; Karger, L. F. P.; Jensen, L.; Jenkins, D. M.; Camden, J. P. A benchtop method for appending protic functional groups to N-heterocyclic carbene protected gold nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 7585–7590.
Crudden, C. M.; Horton, J. H.; Ebralidze, I. I.; Zenkina, O. V.; McLean, A. B.; Drevniok, B.; She, Z.; Kraatz, H. B.; Mosey, N. J.; Seki, T. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 2014, 6, 409–414.
Crudden, C. M.; Horton, J. H.; Narouz, M. R.; Li, Z. J.; Smith, C. A.; Munro, K.; Baddeley, C. J.; Larrea, C. R.; Drevniok, B.; Thanabalasingam, B. et al. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. Nat. Commun. 2016, 7, 12654.
Zhang, L.; Wei, Z. C.; Thanneeru, S.; Meng, M.; Kruzyk, M.; Ung, G.; Liu, B.; He, J. A polymer solution to prevent nanoclustering and improve the selectivity of metal nanoparticles for electrocatalytic CO2 reduction. Angew. Chem. 2019, 131, 15981–15987.
Luo, Q.; Duan, H.; McLaughlin, M. C.; Wei, K.; Tapia, J.; Adewuyi, J. A.; Shuster, S.; Liaqat, M.; Suib, S. L.; Ung, G.; Bai, P.; Sun, S.; He, J. Why surface hydrophobicity promotes CO2 electroreduction: A case study of hydrophobic polymer N-heterocyclic carbenes. Chem. Sci. 2023, 14, 9664–9677.
Rodríguez-Castillo, M.; Lugo-Preciado, G.; Laurencin, D.; Tielens, F.; van der Lee, A.; Clément, S.; Guari, Y.; López-de-Luzuriaga, J. M.; Monge, M.; Remacle, F. et al. Experimental and theoretical study of the reactivity of gold nanoparticles towards benzimidazole-2-ylidene Ligands. Chem.—Eur. J. 2016, 22, 10446–10458.
Arabzadeh Nosratabad, N.; Jin, Z. C.; Arabzadeh, H.; Chen, B. H.; Huang, C.; Mattoussi, H. Molar excess of coordinating N-heterocyclic carbene ligands triggers kinetic digestion of gold nanocrystals. Dalton Trans. 2024, 53, 467–483.
Rodríguez-Castillo, M.; Laurencin, D.; Tielens, F.; van der Lee, A.; Clément, S.; Guari, Y.; Richeter, S. Reactivity of gold nanoparticles towards N-heterocyclic carbenes. Dalton Trans. 2014, 43, 5978–5982.
Zhang, L.; Wei, Z. C.; Meng, M.; Ung, G.; He, J. Do polymer ligands block the catalysis of metal nanoparticles. Unexpected importance of binding motifs in improving catalytic activity. J. Mater. Chem. A 2020, 8, 15900–15908.
MacLeod, M. J.; Johnson, J. A. PEGylated N-heterocyclic carbene anchors designed to stabilize gold nanoparticles in biologically relevant media. J. Am. Chem. Soc. 2015, 137, 7974–7977.
Richstein, R.; Eisen, C.; Ge, L. C.; Chalermnon, M.; Mayer, F.; Keppler, B. K.; Chin, J. M.; Reithofer, M. R. NHC stabilized copper nanoparticles via reduction of a copper NHC complex. Chem. Commun. 2023, 59, 9738–9741.
Nguyen, D. T. H.; Salek, S.; Shultz-Johnson, L. R.; Bélanger-Bouliga, M.; Jurca, T.; Byers, J. C.; Nazemi, A. Poly( N-heterocyclic carbene)-capped alloy and core-shell auag bimetallic nanoparticles. Angew. Chem., Int. Ed. 2024, 63, e202409800.
Nguyen, D. T. H.; Salek, S.; Shultz-Johnson, L. R.; Bélanger-Bouliga, M.; Jurca, T.; Byers, J. C.; Nazemi, A. Titelbild: Poly( N-heterocyclic carbene)-capped alloy and core-shell auag bimetallic nanoparticles (Angew. Chem. 41/2024). Angew. Chem. 2024, 136, e202414127
Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett. 2013, 13, 2163–2171.
Duan, H. Y.; Jia, Z. Y.; Liaqat, M.; Mellor, M. D.; Tan, H. Y.; Nieh, M. P.; Lin, Y.; Link, S.; Landes, C. F.; He, J. Site-specific chemistry on gold nanorods: Curvature-guided surface dewetting and supracolloidal polymerization. Acs Nano 2023, 17, 12788–12797.
Duan, H. Y.; Malesky, T.; Wang, J.; Liu, C. H.; Tan, H. Y.; Nieh, M. P.; Lin, Y.; He, J. Patchy metal nanoparticles with polymers: Controllable growth and two-way self-assembly. Nanoscale 2022, 14, 7364–7371.
Wei, Z. C.; Mullaj, K.; Price, A.; Wei, K. C.; Luo, Q.; Thanneeru, S.; Sun, S. H.; He, J. Polymer N-heterocyclic carbene (NHC) ligands for silver nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 55227–55237.
Lin, I. J. B.; Vasam, C. S. Preparation and application of N-heterocyclic carbene complexes of Ag(I). Coord. Chem. Rev. 2007, 251, 642–670.
Lee, J.; Ha, J. W. Effect of light irradiation on hot electron-mediated photoreduction of silver ions on single gold nanorods without a reducing agent. J. Phys. Chem. C 2023, 127, 13609–13615.
440
Views
111
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).