AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Unconventional seed-mediated growth of silver with a macromolecular NHC-Ag precursor

Hanyi Duan1Haiyan Tan2Jie He1,2,3 ( )
Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
Show Author Information

Graphical Abstract

Silver nucleates and grows on the lateral surface of gold nanorods (AuNRs) while undergoing dewetting.

Abstract

A “new” Frank-van de Merwe growth mode of Ag has been achieved using a macromolecular N-heterocyclic carbene-Ag(I) (NHC-Ag) complex. This polymer NHC-Ag acts as both a metal precursor and a capping ligand in the seed-mediated growth of Ag on gold nanorods (AuNRs). The newly deposited Ag nanospheres de-wet the lateral surface of AuNRs due to the strong capping of NHC-Ag motif, resulting in phase separated Au-Ag nanostructures with a contact angle of ~ 120°. Remarkably, this growth mode is also applicable to even homometallic systems, enabling the formation of Ag "islands" on Ag-coated AuNRs. This design principle opens alternative pathways to design colloidal nanoparticles with specific and otherwise challenging anisotropic nanostructures.

Electronic Supplementary Material

Download File(s)
7147_ESM.pdf (1.1 MB)

References

[1]

Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. 3.0.CO;2-J">Adv. Mater. 2000, 12, 693–713.

[2]

Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.

[3]

Shi, Y. F.; Lyu, Z.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

[4]

Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453–458.

[5]

Jana, N. R.; Gearheart, L.; Murphy, C. J. Seeding growth for size control of 5‒40 nm diameter gold nanoparticles. Langmuir 2001, 17, 6782–6786.

[6]

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

[7]

Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

[8]

Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

[9]

Ling, D. S.; Hackett, M. J.; Hyeon, T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 2014, 9, 457–477.

[10]

Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.

[11]

Wang, Z. L.; Mohamed, M. B.; Link, S.; El-Sayed, M. A. Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surf. Sci. 1999, 440, L809–L814.

[12]

Xia, X. H.; Zeng, J.; Zhang, Q.; Moran, C. H.; Xia, Y. N. Recent developments in shape-controlled synthesis of silver nanocrystals. J. Phys. Chem. C 2012, 116, 21647–21656.

[13]

Man, R. W. Y.; Li, C. H.; MacLean, M. W. A.; Zenkina, O. V.; Zamora, M. T.; Saunders, L. N.; Rousina-Webb, A.; Nambo, M.; Crudden, C. M. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J. Am. Chem. Soc. 2018, 140, 1576–1579.

[14]

Duan, H. Y.; Yang, T. G.; Sklyar, W.; Chen, B.; Chen, Y. L.; Hanson, L. A.; Sun, S. H.; Lin, Y.; He, J. Phenylacetylene-terminated poly(ethylene glycol) as ligands for colloidal noble metal nanoparticles: A new tool for “grafting to” approach. Nano Lett. 2024, 24, 5847–5854.

[15]

Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.

[16]

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

[17]

Weare, W. W.; Reed, S. M.; Warner, M. G.; Hutchison, J. E. Improved synthesis of small ( dCORE ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc. 2000, 122, 12890–12891.

[18]

Nikoobakht, B.; El-Sayed, M. A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 2001, 17, 6368–6374.

[19]

Du, L.; Nosratabad, N. A.; Jin, Z. C.; Zhang, C. Q.; Wang, S. S.; Chen, B. H.; Mattoussi, H. Luminescent quantum dots stabilized by N-heterocyclic carbene polymer ligands. J. Am. Chem. Soc. 2021, 143, 1873–1884.

[20]

Nosratabad, N. A.; Jin, Z. C.; Du, L.; Thakur, M.; Mattoussi, H. N-heterocyclic carbene-stabilized gold nanoparticles: Mono- versus multidentate ligands. Chem. Mater. 2021, 33, 921–933.

[21]

Thanneeru, S.; Ayers, K. M.; Anuganti, M.; Zhang, L.; Kumar, C. V.; Ung, G.; He, J. N-heterocyclic carbene-ended polymers as surface ligands of plasmonic metal nanoparticles. J. Mater. Chem. C 2020, 8, 2280–2288.

[22]

Kaur, G.; Thimes, R. L.; Camden, J. P.; Jenkins, D. M. Fundamentals and applications of N-heterocyclic carbene functionalized gold surfaces and nanoparticles. Chem. Commun. 2022, 58, 13188–13197.

[23]

DeJesus, J. F.; Sherman, L. M.; Yohannan, D. J.; Becca, J. C.; Strausser, S. L.; Karger, L. F. P.; Jensen, L.; Jenkins, D. M.; Camden, J. P. A benchtop method for appending protic functional groups to N-heterocyclic carbene protected gold nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 7585–7590.

[24]

Crudden, C. M.; Horton, J. H.; Ebralidze, I. I.; Zenkina, O. V.; McLean, A. B.; Drevniok, B.; She, Z.; Kraatz, H. B.; Mosey, N. J.; Seki, T. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 2014, 6, 409–414.

[25]

Crudden, C. M.; Horton, J. H.; Narouz, M. R.; Li, Z. J.; Smith, C. A.; Munro, K.; Baddeley, C. J.; Larrea, C. R.; Drevniok, B.; Thanabalasingam, B. et al. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. Nat. Commun. 2016, 7, 12654.

[26]

Zhang, L.; Wei, Z. C.; Thanneeru, S.; Meng, M.; Kruzyk, M.; Ung, G.; Liu, B.; He, J. A polymer solution to prevent nanoclustering and improve the selectivity of metal nanoparticles for electrocatalytic CO2 reduction. Angew. Chem. 2019, 131, 15981–15987.

[27]

Luo, Q.; Duan, H.; McLaughlin, M. C.; Wei, K.; Tapia, J.; Adewuyi, J. A.; Shuster, S.; Liaqat, M.; Suib, S. L.; Ung, G.; Bai, P.; Sun, S.; He, J. Why surface hydrophobicity promotes CO2 electroreduction: A case study of hydrophobic polymer N-heterocyclic carbenes. Chem. Sci. 2023, 14, 9664–9677.

[28]
Duan, H. Y.; Lin, Y.; He, J. Polymeric N-heterocyclic carbenes to functionalize plasmonic metal nanoparticles. In World Scientific Reference on Plasmonic Nanomaterials: Principles, Design and Bio-applications: Volume 3: Self-Assembly of Plasmonic Nanostructures. Nie, Z. H., Ed.; World Scientific: Singapore, 2022; pp 409–432.
[29]

Rodríguez-Castillo, M.; Lugo-Preciado, G.; Laurencin, D.; Tielens, F.; van der Lee, A.; Clément, S.; Guari, Y.; López-de-Luzuriaga, J. M.; Monge, M.; Remacle, F. et al. Experimental and theoretical study of the reactivity of gold nanoparticles towards benzimidazole-2-ylidene Ligands. Chem.—Eur. J. 2016, 22, 10446–10458.

[30]

Arabzadeh Nosratabad, N.; Jin, Z. C.; Arabzadeh, H.; Chen, B. H.; Huang, C.; Mattoussi, H. Molar excess of coordinating N-heterocyclic carbene ligands triggers kinetic digestion of gold nanocrystals. Dalton Trans. 2024, 53, 467–483.

[31]

Rodríguez-Castillo, M.; Laurencin, D.; Tielens, F.; van der Lee, A.; Clément, S.; Guari, Y.; Richeter, S. Reactivity of gold nanoparticles towards N-heterocyclic carbenes. Dalton Trans. 2014, 43, 5978–5982.

[32]

Zhang, L.; Wei, Z. C.; Meng, M.; Ung, G.; He, J. Do polymer ligands block the catalysis of metal nanoparticles. Unexpected importance of binding motifs in improving catalytic activity. J. Mater. Chem. A 2020, 8, 15900–15908.

[33]

MacLeod, M. J.; Johnson, J. A. PEGylated N-heterocyclic carbene anchors designed to stabilize gold nanoparticles in biologically relevant media. J. Am. Chem. Soc. 2015, 137, 7974–7977.

[34]

Richstein, R.; Eisen, C.; Ge, L. C.; Chalermnon, M.; Mayer, F.; Keppler, B. K.; Chin, J. M.; Reithofer, M. R. NHC stabilized copper nanoparticles via reduction of a copper NHC complex. Chem. Commun. 2023, 59, 9738–9741.

[35]

Nguyen, D. T. H.; Salek, S.; Shultz-Johnson, L. R.; Bélanger-Bouliga, M.; Jurca, T.; Byers, J. C.; Nazemi, A. Poly( N-heterocyclic carbene)-capped alloy and core-shell auag bimetallic nanoparticles. Angew. Chem., Int. Ed. 2024, 63, e202409800.

[36]

Nguyen, D. T. H.; Salek, S.; Shultz-Johnson, L. R.; Bélanger-Bouliga, M.; Jurca, T.; Byers, J. C.; Nazemi, A. Titelbild: Poly( N-heterocyclic carbene)-capped alloy and core-shell auag bimetallic nanoparticles (Angew. Chem. 41/2024). Angew. Chem. 2024, 136, e202414127

[37]

Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett. 2013, 13, 2163–2171.

[38]

Duan, H. Y.; Jia, Z. Y.; Liaqat, M.; Mellor, M. D.; Tan, H. Y.; Nieh, M. P.; Lin, Y.; Link, S.; Landes, C. F.; He, J. Site-specific chemistry on gold nanorods: Curvature-guided surface dewetting and supracolloidal polymerization. Acs Nano 2023, 17, 12788–12797.

[39]

Duan, H. Y.; Malesky, T.; Wang, J.; Liu, C. H.; Tan, H. Y.; Nieh, M. P.; Lin, Y.; He, J. Patchy metal nanoparticles with polymers: Controllable growth and two-way self-assembly. Nanoscale 2022, 14, 7364–7371.

[40]

Wei, Z. C.; Mullaj, K.; Price, A.; Wei, K. C.; Luo, Q.; Thanneeru, S.; Sun, S. H.; He, J. Polymer N-heterocyclic carbene (NHC) ligands for silver nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 55227–55237.

[41]

Lin, I. J. B.; Vasam, C. S. Preparation and application of N-heterocyclic carbene complexes of Ag(I). Coord. Chem. Rev. 2007, 251, 642–670.

[42]

Lee, J.; Ha, J. W. Effect of light irradiation on hot electron-mediated photoreduction of silver ions on single gold nanorods without a reducing agent. J. Phys. Chem. C 2023, 127, 13609–13615.

Nano Research
Cite this article:
Duan H, Tan H, He J. Unconventional seed-mediated growth of silver with a macromolecular NHC-Ag precursor. Nano Research, 2024, https://doi.org/10.26599/NR.2025.94907147
Topics:

440

Views

111

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 October 2024
Revised: 20 November 2024
Accepted: 21 November 2024
Published: 26 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return