AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Targeted tilianin lipid nanoparticles for the treatment of atherosclerosis through remodeling lesional macrophage phenotype

Yaoyao Luo1,§Zhongshan He1,§Mengran Guo1,§Xinchun Wang2,3,§Zhaohui Jin1,§Min Sun2Huiling Yang2Wanqin Zeng1Shengbin Liu1Yupei Zhang1Guohong Li1Xiaoling Yin1Shugang Qin1Xing Duan1Yong'an Hu2Xiangrong Song1 ( )
Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
First Affiliated Hospital of the Medical College, Shihezi University, Shihezi 832008, China
College of Medicine, Shihezi University, Shihezi 832002, China

§ Yaoyao Luo, Zhongshan He, Mengran Guo, Xinchun Wang, and Zhaohui Jin contributed equally to this work.

Show Author Information

Graphical Abstract

The development and therapeutic efficacy of a lesional macrophage-targeted tilianin (Til) lipid nanoparticles (FA@Til-LNPs) for atherosclerosis treatment were reported.

Abstract

Remodeling of the lesional macrophages in atherosclerotic plaques from pro-inflammatory M1 to pro-resolving M2 phenotype is emerging as a promising approach to atherosclerosis treatment. Tilianin (Til), as a natural plant-derived ingredient, has the potential to suppress atherosclerosis progression. However, the poorly aqueous solubility and capacity of targeted plaques limit to clinic transformation of Til. Furthermore, whether Til can remodel the lesional macrophage phenotype remains uninvestigated. Herein, we developed a lesional macrophage-targeted Til lipid nanoparticles (FA@Til-LNPs) via folate modification and investigated their therapeutic efficiency and potential mechanisms for atherosclerosis treatment. We observed that the FA@Til-LNPs not only improved solubility and bioavailability, but also actively targeted M1 macrophages in atherosclerotic plaques, and the internalized FA@Til-LNPs could effectively regulate macrophage polarization toward the M2 phenotype. The nanotherapeutics reduced plaque areas and substantially improved plaque stability by effectively reducing necrotic core area and augmenting the collagen cap area in high-fat diet-fed ApoE−/− mice. Mechanistically, RNA-sequencing analysis revealed that the FA@Til-LNPs inhibited the pro-inflammatory signaling pathway by down-regulating the expression of pro-inflammatory genes associated with cytokine and chemokine pathways in lesional macrophages. This study first developed the innovative targeting nanotherapeutics of Til to regulate macrophage phenotype for atherosclerosis treatment.

Electronic Supplementary Material

Download File(s)
7144_ESM.pdf (2.7 MB)

References

[1]

Björkegren, J. L. M.; Lusis, A. J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645.

[2]

Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533.

[3]

Johns, D. G.; Campeau, L. C.; Banka, P.; Bautmans, A.; Bueters, T.; Bianchi, E.; Branca, D.; Bulger, P. G.; Crevecoeur, I.; Ding, F. X. et al. Orally bioavailable macrocyclic peptide that inhibits binding of PCSK9 to the low density lipoprotein receptor. Circulation 2023, 148, 144–158.

[4]

Nabel, E. G.; Braunwald, E. A tale of coronary artery disease and myocardial infarction. N. Engl. J. Med. 2012, 366, 54–63.

[5]

Roth, G. A.; Mensah, G. A.; Johnson, C. O.; Addolorato, G.; Ammirati, E.; Baddour, L. M.; Barengo, N. C.; Beaton, A. Z.; Benjamin, E. J.; Benziger, C. P. et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021.

[6]

Townsend, N.; Kazakiewicz, D.; Lucy Wright, F.; Timmis, A.; Huculeci, R.; Torbica, A.; Gale, C. P.; Achenbach, S.; Weidinger, F.; Vardas, P. Epidemiology of cardiovascular disease in Europe. Nat. Rev. Cardiol. 2022, 19, 133–143.

[7]

Doran, A. C. Inflammation resolution: Implications for atherosclerosis. Circ. Res. 2022, 130, 130–148.

[8]

Mehu, M.; Narasimhulu, C. A.; Singla, D. K. Inflammatory cells in atherosclerosis. Antioxidants 2022, 11, 233.

[9]

Skeoch, S.; Bruce, I. N. Atherosclerosis in rheumatoid arthritis: Is it all about inflammation. Nat. Rev. Rheumatol. 2015, 11, 390–400.

[10]

Chen, R. K.; Zhang, H. R.; Tang, B. T.; Luo, Y. K.; Yang, Y. F.; Zhong, X.; Chen, S. F.; Xu, X. J.; Huang, S. K.; Liu, C. Z. Macrophages in cardiovascular diseases: Molecular mechanisms and therapeutic targets. Sig. Transduct. Target. Ther. 2024, 9, 130.

[11]

Khoury, M. K.; Yang, H.; Liu, B. Macrophage biology in cardiovascular diseases. Arterioscler. Thromb. Vasc. Biol. 2021, 41, e77–e81.

[12]

Vergallo, R.; Crea, F. Atherosclerotic plaque healing. N. Engl. J. Med. 2020, 383, 846–857.

[13]

Deng, X. j.; Wang, J. H.; Yu, S. S.; Tan, S.Y.; Yu, T. T.; Xu, Q. X.; Chen, N. H.; Zhang, S. Q.; Zhang, M. R.; Hu, K. et al. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. Exploration 2024, 4, 20230090.

[14]

Zhi, W. B.; Liu, Y.; Wang, X. M.; Zhang, H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. J. Ethnopharmacol. 2023, 301, 115749.

[15]

Alamgeer; Asif, H.; Sandhu, M. Z. A.; Aziz, M.; Irfan, H. M.; Moreno, K. G. T.; Junior, A. G. Ameliorative effects and cellular aspects of phytoconstituents in atherosclerosis. Curr. Pharm. Des. 2020, 26, 2574–2582.

[16]

Khattulanuar, F. S.; Sekar, M.; Fuloria, S.; Gan, S. H.; Rani, N. N. I. M.; Ravi, S.; Chidambaram, K.; Begum, M. Y.; Azad, A. K.; Jeyabalan, S. et al. Tilianin: A potential natural lead molecule for new drug design and development for the treatment of cardiovascular disorders. Molecules 2022, 27, 673.

[17]

Akanda, M. R.; Uddin, M. N.; Kim, I. S.; Ahn, D.; Tae, H. J.; Park, B. Y. The biological and pharmacological roles of polyphenol flavonoid tilianin. Eur. J. Pharmacol. 2019, 842, 291–297.

[18]

Nam, K. W.; Kim, J.; Hong, J. J.; Choi, J. H.; Mar, W.; Cho, M. H.; Kim, Y. M.; Oh, S. R.; Lee, H. K.; Nam, K. H. et al. Inhibition of cytokine-induced IκB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin in hyperlipidemic mice. Atherosclerosis 2005, 180, 27–35.

[19]

Shen, W. L.; Anwaier, G.; Cao, Y. N.; Lian, G.; Chen, C.; Liu, S.; Tuerdi, N.; Qi, R. Atheroprotective mechanisms of tilianin by inhibiting inflammation through down-regulating NF-κB pathway and foam cells formation. Front. Physiol. 2019, 10, 825.

[20]

Huang, L.; Huang, X. H.; Yang, X.; Hu, J. Q.; Zhu, Y. C.; Yan, P. Y.; Xie, Y. Novel nano-drug delivery system for natural products and their application. Pharmacol. Res. 2024, 201, 107100.

[21]

Zeng, C.; Zheng, R. F.; Yang, X. Y.; Du, Y. W.; Xing, J. G.; Lan, W. Improved oral delivery of tilianin through lipid-polymer hybrid nanoparticles to enhance bioavailability. Biochem. Biophys. Res. Commun. 2019, 519, 316–322.

[22]

Wang, Y. F.; Wang, Y.; Wang, X. C.; Hu, P. Tilianin-loaded reactive oxygen species-scavenging nano-micelles protect H9c2 cardiomyocyte against hypoxia/reoxygenation-induced injury. J. Cardiovasc. Pharmacol. 2018, 72, 32–39.

[23]

Tao, W.; Yurdagul, A. Jr.; Kong, N.; Li, W. L.; Wang, X. B.; Doran, A. C.; Feng, C.; Wang, J. Q.; Ariful Islam, M.; Farokhzad, O. C. et al. siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 2020, 12, eaay1063.

[24]

Kou, L. F.; Huang, H. R.; Tang, Y. Y.; Sun, M.; Li, Y. T.; Wu, J. N.; Zheng, S. M.; Zhao, X. Y.; Chen, D. S.; Luo, Z. C. et al. Opsonized nanoparticles target and regulate macrophage polarization for osteoarthritis therapy: A trapping strategy. J. Control. Release 2022, 347, 237–235.

[25]

Łopianiak, I.; Rzempołuch, W.; Civelek, M.; Cicha, I.; Ciach, T.; Butruk-Raszeja, B. A. Multilayered blow-spun vascular prostheses with luminal surfaces in Nano/Micro range: The influence on endothelial cell and platelet adhesion. J. Biol. Eng. 2023, 17, 20.

[26]

Li, Y. F.; Liang, Q. W.; Zhou, L. Y.; Cao, Y. J.; Yang, J. Y.; Li, J.; Liu, J. X.; Bi, J. W.; Liu, Y. H. An ROS-responsive artesunate prodrug nanosystem co-delivers dexamethasone for rheumatoid arthritis treatment through the HIF-1α/NF-κB cascade regulation of ROS scavenging and macrophage repolarization. Acta Biomater. 2022, 152, 406–424.

[27]

Huang, X. G.; Liu, C.; Kong, N.; Xiao, Y. F.; Yurdagul, A. Jr. ; Tabas, I.; Tao, W. Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nat. Protoc. 2022, 17, 748–780.

[28]

Guo, M. R.; He, Z. S.; Jin, Z. H.; Huang, L. J.; Yuan, J. M.; Qin, S. G.; Wang, X. C.; Cao, L. L.; Song, X. R. Oral nanoparticles containing naringenin suppress atherosclerotic progression by targeting delivery to plaque macrophages. Nano Res. 2023, 16, 925–937.

[29]

Zhao, M.; Li, J.; Chen, F.; Han, Y. Y.; Chen, D. W.; Hu, H. Y. Engineering nanoparticles boost TNBC therapy by CD24 blockade and mitochondrial dynamics regulation. J. Control. Release 2023, 355, 211–227.

[30]

Chen, B. B.; Guo, K. L.; Zhao, X. Y.; Liu, Z. W.; Xu, C.; Zhao, N. N.; Xu, F. J. Tumor microenvironment-responsive delivery nanosystems reverse immunosuppression for enhanced CO gas/immunotherapy. Exploration 2023, 3, 20220140.

[31]

Tang, Y. X.; Tang, Z. J.; Li, P. R.; Tang, K. C.; Ma, Z. Y.; Wang, Y. T.; Wang, X. Y.; Li, C. Precise delivery of nanomedicines to M2 macrophages by combining "Eat Me/Don't Eat Me" signals and its anticancer application. ACS Nano 2021, 15, 18100–18112.

[32]

He, Z. S.; Chen, W.; Hu, K.; Luo, Y. Y.; Zeng, W. Q.; He, X.; Li, T. T.; Ouyang, J.; Li, Y. J.; Xie, L. et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat. Nanotechnol. 2024, 19, 1386–1398.

[33]

Feng, M. Z.; Liu, L.; Qu, Z. C.; Zhang, B.; Wang, Y. J.; Yan, L.; Kong, L. B. CRISPR/Cas9 knockout of MTA1 enhanced RANKL-induced osteoclastogenesis in RAW264.7 cells partly via increasing ROS activities. J. Cell. Mol. Med. 2023, 27, 701–713.

[34]

Liang, M. X.; Wang, Q.; Zhang, S.; Lan, Q.; Wang, R. J.; Tan, E. C.; Zhou, L.; Wang, C. P.; Wang, H.; Cheng, Y. Y. Polypyridiniums with inherent autophagy-inducing activity for atherosclerosis treatment by intracellularly Co-delivering two antioxidant enzymes. Adv. Mater. 2024, 36, 2409015.

[35]

Flores, A. M.; Hosseini-Nassab, N.; Jarr, K. U.; Ye, J. Q.; Zhu, X. J.; Wirka, R.; Leen Koh, A.; Tsantilas, P.; Wang, Y.; Nanda, V. et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 2020, 15, 154–161.

[36]

Wu, Z. Y.; Zhou, M.; Tang, X. T.; Zeng, J. Q.; Li, Y. Z.; Sun, Y. N.; Huang, J.; Chen, L.; Wan, M. M.; Mao, C. Carrier-free trehalose-based nanomotors targeting macrophages in inflammatory plaque for treatment of atherosclerosis. ACS Nano 2022, 16, 3808–3820.

[37]

Liu, T. F.; Xiao, B. W.; Xiang, F.; Tan, J. L.; Chen, Z.; Zhang, X. R.; Wu, C. Z.; Mao, Z. W.; Luo, G. X.; Chen, X. Y. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788.

[38]

Xia, Y. Y.; Zhang, Q. Z.; Ye, Y. Y.; Wu, X. Y.; He, F.; Peng, Y. Y.; Yin, Y. L.; Ren, W. K. Melatonergic signalling instructs transcriptional inhibition of IFNGR2 to lessen interleukin-1β-dependent inflammation. Clin. Transl. Med. 2022, 12, e716.

[39]

Gao, W.; Zhao, Y. J.; Li, X.; Sun, Y. H.; Cai, M.; Cao, W. H.; Liu, Z. H.; Tong, L. L.; Cui, G. W.; Tang, B. H2O2-responsive and plaque-penetrating nanoplatform for mTOR gene silencing with robust anti-atherosclerosis efficacy. Chem. Sci. 2018, 9, 439–445.

[40]

Banerjee, A.; Qi, J. P.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 2016, 238, 176–185.

[41]

Turecek, P. L.; Bossard, M. J.; Schoetens, F.; Ivens, I. A. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 2016, 105, 460–475.

[42]

Gao, C.; Liu, C. H.; Chen, Q.; Wang, Y.; Kwong, C. H. T.; Wang, Q. F.; Xie, B. B.; Lee, S. M. Y.; Wang, R. B. Cyclodextrin-mediated conjugation of macrophage and liposomes for treatment of atherosclerosis. J. Control. Release 2022, 349, 2–15.

[43]

Hu, R. Z.; Dai, C.; Dong, C. H.; Ding, L.; Huang, H.; Chen, Y.; Zhang, B. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano 2022, 16, 15959–15976.

[44]

Xiang, Y. M.; Lu, J. L.; Mao, C. Y.; Zhu, Y. Z.; Wang, C. F.; Wu, J.; Liu, X. M.; Wu, S. L.; Kwan, K. Y. H.; Cheung, K. M. C. et al. Ultrasound-triggered interfacial engineering-based microneedle for bacterial infection acne treatment. Sci. Adv. 2023, 9, eadf0854.

[45]

Sui, B. Y.; Ding, T. T.; Wan, X. Y.; Chen, Y. X.; Zhang, X. D.; Cui, Y.B.; Pan, J.; Li, L.L.; Liu, X. Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages. Exploration 2024, 4, 20230149.

Nano Research
Article number: 94907144
Cite this article:
Luo Y, He Z, Guo M, et al. Targeted tilianin lipid nanoparticles for the treatment of atherosclerosis through remodeling lesional macrophage phenotype. Nano Research, 2025, 18(2): 94907144. https://doi.org/10.26599/NR.2025.94907144
Topics:

369

Views

57

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 August 2024
Revised: 18 November 2024
Accepted: 19 November 2024
Published: 08 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return