Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Recent advancements in defect engineering have significantly improved catalysis by modulating the electronic structure and enhancing the intrinsic abilities of catalysts. However, establishing a clear structure–property relationship at the atomic level remains a challenge due to the inherent polydispersity of catalysts, which hinders a comprehensive understanding of the defect catalysts. Atomically precise metal nanoclusters can serve as model catalysts because of their perfect monodispersity and well-defined structure. While, the understanding about defects in atomically precise metal nanoclusters is insufficient. This review encompasses various types of defects (such as heteroatom incorporation, vacancies, ligand deficiencies, etc.) in atomically precise coingage metal clusters, characterization methods, and their applications within the realm of catalysis. At the conclusion of this review, we propose several prospects, including the controllable construction of defects, further enhancement of the performance of clusters with defects, and monitoring the in-situ evolution of defects in clusters during catalysis. The purpose of this review is to deepen the understanding of defects in atomically precise clusters, establish the relationship between defect structure and catalytic performance, and offer valuable insights for the designing and developing of efficient defect-rich cluster catalysts.
Ding, S. P.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.
Xue, Z. H.; Luan, D. T.; Zhang, H. B.; Lou, X. W. Single-atom catalysts for photocatalytic energy conversion. Joule 2022, 6, 92–133.
Cronin, L.; Mehr, S. H. M.; Granda, J. M. Catalyst: The metaphysics of chemical reactivity. Chem 2018, 4, 1759–1761.
Zhang, X. H.; Liu, R.; Liu, T.; Pei, C. L.; Gong, J. L. Redox catalysts for chemical looping methane conversion. Trends Chem. 2023, 5, 512–525.
Kim, S.; Lee, J. Pyrolysis of food waste over a Pt catalyst in CO2 atmosphere. J. Hazard. Mater. 2020, 393, 122449.
Manjula, N.; Pulikkutty, S.; Chen, S. M. 3D flower-like ceria silver co-doped zinc oxide catalyst assembled by nanorod for electrochemical sensing of zearalenone in food samples. Food Chem. 2023, 416, 135777.
Roduner, E. Understanding catalysis. Chem. Soc. Rev. 2014, 43, 8226–8239.
Zhan, G. P.; Wu, C. D. Reducing energy barriers of chemical reactions with a nanomicrocell catalyst consisting of integrated active sites in conductive matrices. Sci. Bull. 2019, 64, 385–390.
Armor, J. N. A history of industrial catalysis. Catal. Today 2011, 163, 3–9.
Turrentine, J. W. Synthetic ammonia in the fertilizer industry. J. Chem. Educ. 1929, 6, 894.
Guo, J. P.; Chen, P. Ammonia history in the making. Nat. Catal. 2021, 4, 734–735.
Xiong, X. H.; Miao, Y.; Lu, X. C.; Tan, H. Z.; ur Rahman, Z.; Li, P. C1~C2 hydrocarbons generation and mutual conversion behavior in coal pyrolysis process. Fuel 2022, 308, 121929.
Vittoria, A.; Meppelder, A.; Friederichs, N.; Busico, V.; Cipullo, R. Ziegler–Natta catalysts: Regioselectivity and “hydrogen response”. ACS Catal. 2020, 10, 644–651.
Vittoria, A.; Meppelder, A.; Friederichs, N.; Busico, V.; Cipullo, R. Demystifying Ziegler–Natta catalysts: The origin of stereoselectivity. ACS Catal. 2017, 7, 4509–4518.
Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv. Mater. 2019, 31, 1805717.
Xie, C.; Yan, D. F.; Li, H.; Du, S. Q.; Chen, W.; Wang, Y. Y.; Zou, Y. Q.; Chen, R.; Wang, S. Y. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization. ACS Catal. 2020, 10, 11082–11098.
Xie, S. F.; Xu, Q. C.; Huang, X. Q. Defect-rich metal nanocrystals in catalysis. ChemCatChem 2016, 8, 480–485.
Arandiyan, H.; Mofarah, S. S.; Sorrell, C. C.; Doustkhah, E.; Sajjadi, B.; Hao, D.; Wang, Y.; Sun, H. Y.; Ni, B. J.; Rezaei, M. et al. Defect engineering of oxide perovskites for catalysis and energy storage: Synthesis of chemistry and materials science. Chem. Soc. Rev. 2021, 50, 10116–10211.
Luo, Y.; Wu, Y. H. Defect engineering of nanomaterials for catalysis. Nanomaterials 2023, 13, 1116.
Nakamura, A.; Matsunaga, K.; Tohma, J.; Yamamoto, T.; Ikuhara, Y. Conducting nanowires in insulating ceramics. Nat. Mater. 2003, 2, 453–456.
Sabbaghi, S.; Bazargan, V.; Hosseinian, E. Defect engineering for thermal transport properties of nanocrystalline molybdenum diselenide. Nanoscale 2023, 15, 12634–12647.
Ma, J. J.; Zheng, J. J.; Li, W. D.; Wang, D. H.; Wang, B. T. Thermal transport properties of monolayer MoSe2 with defects. Phys. Chem. Chem. Phys. 2020, 22, 5832–5838.
Stern, R.; Wang, T.; Carrete, J.; Mingo, N.; Madsen, G. K. H. Influence of point defects on the thermal conductivity in FeSi. Phys. Rev. B 2018, 97, 195201.
Feng, J. D.; Deschout, H.; Caneva, S.; Hofmann, S.; Lončarić, I.; Lazić, P.; Radenovic, A. Imaging of optically active defects with nanometer resolution. Nano Lett. 2018, 18, 1739–1744.
Moon, J. S.; Lee, H.; Lee, J. H.; Jeon, W. B.; Lee, D.; Lee, J.; Paik, S.; Han, S. W.; Reuter, R.; Denisenko, A. et al. High-resolution, high-contrast optical interface for defect qubits. ACS Photonics 2021, 8, 2642–2649.
Hong, J. H.; Jin, C. H.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 2017, 29, 1606434.
Liu, L. J.; Chen, W. J.; Zheng, Y. Emergent mechanics of magnetic skyrmions deformed by defects. Phys. Rev. Lett. 2023, 131, 246701.
Zussman, J. Crystallography and crystal defects. Mineral. Mag. 1971, 38, 115–116.
Donaldson, L. Understanding surface defects in catalysis. Mater. Today 2017, 20, 99.
Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371–1397.
Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.
Adegoke, K. A.; Maxakato, N. W. Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coord. Chem. Rev. 2022, 457, 214389.
Yang, B. W.; Shi, J. L. Defect engineering of mesoporous silica nanoparticles for biomedical applications. Acc. Mater. Res. 2021, 2, 581–593.
Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658.
Wu, Q. L.; Jia, Y.; Liu, Q.; Mao, X.; Guo, Q.; Yan, X. C.; Zhao, J. P.; Liu, F. C.; Du, A. J.; Yao, X. D. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 2022, 8, 2715–2733.
Lee, W. J.; Lim, J.; Kim, S. O. Nitrogen dopants in carbon nanomaterials: Defects or a new opportunity. Small Methods 2017, 1, 1600014.
Wang, J. X.; Tian, X. X.; Yu, L.; Young, D. J.; Wang, W. B.; Li, H. Y.; Li, H. X. Engineering structural defects into a covalent organic framework for enhanced photocatalytic activity. J. Mater. Chem. A 2021, 9, 25474–25479.
Daliran, S.; Blanco, M.; Dhakshinamoorthy, A.; Oveisi, A. R.; Alemán, J.; García, H. Defects and disorder in covalent organic frameworks for advanced applications. Adv. Funct. Mater. 2024, 34, 2312912.
Zhu, Y. L.; Zhao, H. Y.; Fu, C. L.; Li, Z. W.; Sun, Z. Y. A controlling parameter of topological defects in two-dimensional covalent organic frameworks. Nanoscale 2020, 12, 22107–22115.
Guo, Z. Y.; Wu, H.; Chen, Y.; Zhu, S. Y.; Jiang, H. F.; Song, S. Q.; Ren, Y. X.; Wang, Y. H.; Liang, X.; He, G. W. et al. Missing-linker defects in covalent organic framework membranes for efficient CO2 separation. Angew. Chem., Int. Ed. 2022, 61, e202210466.
Yan, X. C.; Jia, Y.; Yao, X. D. Defective structures in metal compounds for energy-related electrocatalysis. Small Struct. 2021, 2, 2000067.
Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.
Shah, S. S. A.; Sufyan Javed, M.; Najam, T.; Molochas, C.; Khan, N. A.; Nazir, M. A.; Xu, M. W.; Tsiakaras, P.; Bao, S. J. Metal oxides for the electrocatalytic reduction of carbon dioxide: Mechanism of active sites, composites, interface and defect engineering strategies. Coord. Chem. Rev. 2022, 471, 214716.
Zheng, J. X.; Meng, D. P.; Guo, J. X.; Liu, X. B.; Zhou, L.; Wang, Z. Defect engineering for enhanced electrocatalytic oxygen reaction on transition metal oxides: The role of metal defects. Adv. Mater. 2024, 36, 2405129.
Pastor, E.; Sachs, M.; Selim, S.; Durrant, J. R.; Bakulin, A. A.; Walsh, A. Electronic defects in metal oxide photocatalysts. Nat. Rev. Mater. 2022, 7, 503–521.
Zhong, K.; Sun, P. P.; Xu, H. Advances in defect engineering of metal oxides for photocatalytic CO2 reduction. Small 2024, 30, 2310677.
Das, C.; Sinha, N.; Roy, P. Transition metal non-oxides as electrocatalysts: Advantages and challenges. Small 2022, 18, 2202033.
Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.
Zhang, Y. G.; Zhang, Y. H.; Zhang, H. F.; Bai, L. Q.; Hao, L.; Ma, T. Y.; Huang, H. W. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.
Khalil, I. E.; Xue, C.; Liu, W. J.; Li, X. H.; Shen, Y.; Li, S.; Zhang, W. N.; Huo, F. W. The role of defects in metal-organic frameworks for nitrogen reduction reaction: When defects switch to features. Adv. Funct. Mater. 2021, 31, 2010052.
Fu, Y.; Forse, A. C.; Kang, Z. Z.; Cliffe, M. J.; Cao, W. C.; Yin, J. L.; Gao, L.; Pang, Z. F.; He, T.; Chen, Q. L. et al. One-dimensional alignment of defects in a flexible metal-organic framework. Sci. Adv. 2023, 9, eade6975.
Müller, K.; Vankova, N.; Schöttner, L.; Heine, T.; Heinke, L. Dissolving uptake-hindering surface defects in metal-organic frameworks. Chem. Sci. 2019, 10, 153–160.
Yang, F. F.; Liu, D.; Zhao, Y. T.; Wang, H.; Han, J. Y.; Ge, Q. F.; Zhu, X. L. Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts. ACS Catal. 2018, 8, 1672–1682.
Su, X. R.; Wang, C. Y.; Zhao, F.; Wei, T. X.; Zhao, D.; Zhang, J. T. Size effects of supported Cu-based catalysts for the electrocatalytic CO2 reduction reaction. J. Mater. Chem. A 2023, 11, 23188–23210.
Zhao, S.; Jin, R. X.; Jin, R. C. Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Lett. 2018, 3, 452–462.
Wan, J.; Lin, J. S.; Guo, X. L.; Wang, T.; Zhou, R. X. Morphology effect on the structure-activity relationship of Rh/CeO2-ZrO2 catalysts. Chem. Eng. J. 2019, 368, 719–729.
Wei, H. Y.; Wei, T. T.; Li, L. C.; Zhang, T. W.; Seidi, F.; Jin, Y. C.; Xiao, H. N. Morphological effect of ceria-supported platinum catalyst on low-temperature ethylene oxidation. Appl. Catal. B 2023, 324, 122242.
Mustapha, U.; Nnadiekwe, C. C.; Alhaboudal, M. A.; Yunusa, U.; Abdullahi, A. S.; Abdulazeez, I.; Hussain, I.; Ganiyu, S. A.; Al-Saadi, A. A.; Alhooshani, K. The role of morphology on the electrochemical CO2 reduction performance of transition metal-based catalysts. J. Energy Chem. 2023, 85, 198–219.
Li, F.; Li, N.; Xue, C. R.; Wang, H. Q.; Chang, Q.; Liu, H. T.; Yang, J. L.; Hu, S. L. A Cu2O-CDs-Cu three component catalyst for boosting oxidase-like activity with hot electrons. Chem. Eng. J. 2020, 382, 122484.
Tan, K. B.; Zhan, G. W.; Sun, D. H.; Huang, J. L.; Li, Q. B. The development of bifunctional catalysts for carbon dioxide hydrogenation to hydrocarbons via the methanol route: From single component to integrated components. J. Mater. Chem. A 2021, 9, 5197–5231.
Dong, L.; Yao, X. J.; Chen, Y. Interactions among supported copper-based catalyst components and their effects on performance: A review. Chin. J. Catal. 2013, 34, 851–864.
Pei, C. L.; Chen, S.; Fu, D. L.; Zhao, Z. J.; Gong, J. L. Structured catalysts and catalytic processes: Transport and reaction perspectives. Chem. Rev. 2024, 124, 2955–3012.
Zhang, Z.; Li, H. Y.; Wu, D. F.; Zhang, L. N.; Li, J. W.; Xu, J. L.; Lin, S.; Datye, A. K.; Xiong, H. F. Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coord. Chem. Rev. 2022, 460, 214469.
Liang, Z. D.; Wang, G.; Zeng, G. F.; Zhang, J.; Tang, Z. Y. Highly controlled structured catalysts for on-board methanol reforming. J. Energy Chem. 2022, 68, 19–26.
Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.
Liu, Z. H.; Wu, Z. N.; Yao, Q. F.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today 2021, 36, 101053.
Kawawaki, T.; Okada, T.; Hirayama, D.; Negishi, Y. Atomically precise metal nanoclusters as catalysts for electrocatalytic CO2 reduction. Green Chem. 2024, 26, 122–163.
Yan, H.; Xiang, H. X.; Liu, J. H.; Cheng, R. R.; Ye, Y. Q.; Han, Y. H.; Yao, C. H. The factors dictating properties of atomically precise metal nanocluster electrocatalysts. Small 2022, 18, 2200812.
Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.
Masuda, S.; Sakamoto, K.; Tsukuda, T. Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts. Nanoscale 2024, 16, 4514–4528.
Liu, X.; Cai, X.; Zhu, Y. Catalysis synergism by atomically precise bimetallic nanoclusters doped with heteroatoms. Acc. Chem. Res. 2023, 56, 1528–1538.
Li, Q.; Lambright, K. J.; Taylor, M. G.; Kirschbaum, K.; Luo, T. Y.; Zhao, J. B.; Mpourmpakis, G.; Mokashi-Punekar, S.; Rosi, N. L.; Jin, R. C. Reconstructing the surface of gold nanoclusters by cadmium doping. J. Am. Chem. Soc. 2017, 139, 17779–17782.
She, J.; Pei, W.; Zhou, S.; Zhao, J. J. Enhanced fluorescence with tunable color in doped diphosphine-protected gold nanoclusters. J. Phys. Chem. Lett. 2022, 13, 5873–5880.
Li, Y. W.; Biswas, S.; Luo, T. Y.; Juarez-Mosqueda, R.; Taylor, M. G.; Mpourmpakis, G.; Rosi, N. L.; Hendrich, M. P.; Jin, R. C. Doping effect on the magnetism of thiolate-capped 25-atom alloy nanoclusters. Chem. Mater. 2020, 32, 9238–9244.
Han, M.; Guo, M. H.; Yun, Y. P.; Xu, Y. J.; Sheng, H. T.; Chen, Y. X.; Du, Y. X.; Ni, K.; Zhu, Y. W.; Zhu, M. Z. Effect of heteroatom and charge reconstruction in atomically precise metal nanoclusters on electrochemical synthesis of ammonia. Adv. Funct. Mater. 2022, 32, 2202820.
Seong, H.; Choi, M.; Park, S.; Kim, H. W.; Kim, J.; Kim, W.; Yoo, J. S.; Lee, D. Promoting CO2-to-CO electroreduction via the active-site engineering of atomically precise silver nanoclusters. ACS Energy Lett. 2022, 7, 4177–4184.
Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.
Cai, X.; Hu, W. G.; Xu, S.; Yang, D.; Chen, M. Y.; Shu, M.; Si, R.; Ding, W. P.; Zhu, Y. Structural relaxation enabled by internal vacancy available in a 24-atom gold cluster reinforces catalytic reactivity. J. Am. Chem. Soc. 2020, 142, 4141–4153.
Zhang, Y. Q.; Liu, H. W.; Zhao, S. Y.; Xie, C.; Huang, Z. G.; Wang, S. Y. Insights into the dynamic evolution of defects in electrocatalysts. Adv. Mater. 2023, 35, 2209680.
Liu, Z. J.; Kong, Z. J.; Cui, S. S.; Liu, L. Y.; Wang, F.; Wang, Y. Y.; Wang, S. Y.; Zang, S. Q. Electrocatalytic mechanism of defect in spinels for water and organics oxidation. Small 2023, 19, 2302216.
Liu, Z. J.; Guo, J. Y.; Liu, L. Y.; Wang, F.; Kong, Z. J.; Wang, Y. Y. Defect spinel oxides for electrocatalytic reduction reactions. Nano Res. 2024, 17, 3547–3570.
Xue, D. P.; Xia, H. C.; Yan, W. F.; Zhang, J. N.; Mu, S. C. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nanomicro Lett. 2020, 13, 5.
Xu, W. L.; Zhang, Y. W.; Wang, J. J.; Xu, Y. X.; Bian, L.; Ju, Q.; Wang, Y. M.; Fang, Z. L. Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass. Nat. Commun. 2022, 13, 2068.
Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.
Zhou, Y.; Gu, W. M.; Wang, R. G.; Zhu, W. L.; Hu, Z. Y.; Fei, W. W.; Zhuang, S. L.; Li, J.; Deng, H. T.; Xia, N. et al. Controlled sequential doping of metal nanocluster. Nano Lett. 2024, 24, 2226–2233.
Wang, F.; Lin, J.; Zhao, T. B.; Hu, D. D.; Wu, T.; Liu, Y. Intrinsic “vacancy point defect” induced electrochemiluminescence from coreless supertetrahedral chalcogenide nanocluster. J. Am. Chem. Soc. 2016, 138, 7718–7724.
Niihori, Y.; Kurashige, W.; Matsuzaki, M.; Negishi, Y. Remarkable enhancement in ligand-exchange reactivity of thiolate-protected Au25 nanoclusters by single Pd atom doping. Nanoscale 2013, 5, 508–512.
Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24cluster. Phys. Chem. Chem. Phys. 2010, 12, 6219–6225.
Tian, S. B.; Liao, L. W.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Yang, J. L.; Wu, Z. K. Structures and magnetism of mono-palladium and mono-platinum doped Au25(PET)18 nanoclusters. Chem. Commun. 2016, 52, 9873–9876.
Lu, Y. Z.; Zhang, C. M.; Li, X. K.; Frojd, A. R.; Xing, W.; Clayborne, A. Z.; Chen, W. Significantly enhanced electrocatalytic activity of Au25 clusters by single platinum atom doping. Nano Energy 2018, 50, 316–322.
Kang, X.; Zhu, M. Z. Transformation of atomically precise nanoclusters by ligand-exchange. Chem. Mater. 2019, 31, 9939–9969.
Wei, X.; Kang, X.; Wang, S. X.; Zhu, M. Z. Simultaneous hetero-atom doping and foreign-thiolate exchange on the Au25(SR)18 nanocluster. Dalton Trans. 2018, 47, 13766–13770.
Wang, Y. N.; Bürgi, T. Ligand exchange reactions on thiolate-protected gold nanoclusters. Nanoscale Adv. 2021, 3, 2710–2727.
Yao, C. H.; Chen, J. S.; Li, M. B.; Liu, L. R.; Yang, J. L.; Wu, Z. K. Adding two active silver atoms on Au25 nanoparticle. Nano Lett. 2015, 15, 1281–1287.
Kazan, R.; Zhang, B.; Bürgi, T. Au38Cu1(2-PET)24 nanocluster: Synthesis, enantioseparation and luminescence. Dalton Trans. 2017, 46, 7708–7713.
Yao, C. H.; Lin, Y. J.; Yuan, J. Y.; Liao, L. W.; Zhu, M.; Weng, L. H.; Yang, J. L.; Wu, Z. K. Mono-cadmium vs mono-mercury doping of Au25 nanoclusters. J. Am. Chem. Soc. 2015, 137, 15350–15353.
Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18]− nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.
Zheng, K. Y.; Fung, V.; Yuan, X.; Jiang, D. E.; Xie, J. P. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977–18983.
Khatun, E.; Chakraborty, P.; Jacob, B. R.; Paramasivam, G.; Bodiuzzaman, M.; Dar, W. A.; Pradeep, T. Intercluster reactions resulting in silver-rich trimetallic nanoclusters. Chem. Mater. 2020, 32, 611–619.
Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Pradeep, T. Manifestation of geometric and electronic shell structures of metal clusters in intercluster reactions. ACS Nano 2017, 11, 6015–6023.
Krishnadas, K. R.; Ghosh, A.; Baksi, A.; Chakraborty, I.; Natarajan, G.; Pradeep, T. Intercluster reactions between Au25(SR)18 and Ag44(SR)30. J. Am. Chem. Soc. 2016, 138, 140–148.
Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Teo, B. K. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278–3281.
Rybacki, M.; Nagarajan, A. V.; Mpourmpakis, G. Ligand removal energetics control CO2 electroreduction selectivity on atomically precise, ligated alloy nanoclusters. Environ. Sci.: Nano 2022, 9, 2032–2040.
Li, Q.; Wang, S. X.; Kirschbaum, K.; Lambright, K. J.; Das, A.; Jin, R. C. Heavily doped Au25– x Ag x (SC6H11)18− nanoclusters: Silver goes from the core to the surface. Chem. Commun. 2016, 52, 5194–5197.
Khatun, E.; Pradeep, T. New routes for multicomponent atomically precise metal nanoclusters. ACS Omega 2021, 6, 1–16.
Bootharaju, M. S.; Sinatra, L.; Bakr, O. M. Distinct metal-exchange pathways of doped Ag25 nanoclusters. Nanoscale 2016, 8, 17333–17339.
Fei, W. W.; Antonello, S.; Dainese, T.; Dolmella, A.; Lahtinen, M.; Rissanen, K.; Venzo, A.; Maran, F. Metal doping of Au25(SR)18– clusters: Insights and hindsights. J. Am. Chem. Soc. 2019, 141, 16033–16045.
Kim, M.; Weerawardene, K. L. D. M.; Choi, W.; Han, S. M.; Paik, J.; Kim, Y.; Choi, M. G.; Aikens, C. M.; Lee, D. Insights into the metal-exchange synthesis of MAg24(SR)18 (M = Ni, Pd, Pt) nanoclusters. Chem. Mater. 2020, 32, 10216–10226.
Jin, S.; Wang, S. X.; Song, Y. B.; Zhou, M.; Zhong, J.; Zhang, J.; Xia, A. D.; Pei, Y.; Chen, M.; Li, P. et al. Crystal structure and optical properties of the [Ag62S12(SBut)32]2+ nanocluster with a complete face-centered cubic kernel. J. Am. Chem. Soc. 2014, 136, 15559–15565.
Cai, X.; Sun, Y. N.; Xu, J. Y.; Zhu, Y. Contributions of internal atoms of atomically precise metal nanoclusters to catalytic performances. Chem. —Eur. J. 2021, 27, 11539–11547.
Zhou, Y.; Liao, L. W.; Zhuang, S. L.; Zhao, Y.; Gan, Z. B.; Gu, W. M.; Li, J.; Deng, H. T.; Xia, N.; Wu, Z. K. Traceless removal of two kernel atoms in a gold nanocluster and its impact on photoluminescence. Angew. Chem., Int. Ed. 2021, 60, 8668–8672.
Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.
Zhao, J. T.; Ziarati, A.; Rosspeintner, A.; Wang, Y. N.; Bürgi, T. Engineering ligand chemistry on Au25 nanoclusters: From unique ligand addition to precisely controllable ligand exchange. Chem. Sci. 2023, 14, 7665–7674.
Zeng, Y.; Havenridge, S.; Gharib, M.; Baksi, A.; Weerawardene, K. L. D. M.; Ziefuß, A. R.; Strelow, C.; Rehbock, C.; Mews, A.; Barcikowski, S. et al. Impact of ligands on structural and optical properties of Ag29 nanoclusters. J. Am. Chem. Soc. 2021, 143, 9405–9414.
Suzuki, W.; Takahata, R.; Chiga, Y.; Kikkawa, S.; Yamazoe, S.; Mizuhata, Y.; Tokitoh, N.; Teranishi, T. Control over ligand-exchange positions of thiolate-protected gold nanoclusters using steric repulsion of protecting ligands. J. Am. Chem. Soc. 2022, 144, 12310–12320.
Wei, X.; Lv, Y.; Shen, H. L.; Li, H.; Kang, X.; Yu, H. Z.; Zhu, M. Z. Secondary ligand engineering of nanoclusters: Effects on molecular structures, supramolecular aggregates, and optical properties. Aggregate 2023, 4, e246.
Shan, H. T.; Shi, J. F.; Chen, T. K.; Cao, Y. T.; Yao, Q. F.; An, H.; Yang, Z. C.; Wu, Z. H.; Jiang, Z. Y.; Xie, J. P. Modulating catalytic activity and stability of atomically precise gold nanoclusters as peroxidase mimics via ligand engineering. ACS Nano 2023, 17, 2368–2377.
Shen, H.; Wu, Q. Y.; Malola, S.; Han, Y. Z.; Xu, Z.; Qin, R. X.; Tang, X. K.; Chen, Y. B.; Teo, B. K.; Häkkinen, H. et al. N-heterocyclic carbene-stabilized gold nanoclusters with organometallic motifs for promoting catalysis. J. Am. Chem. Soc. 2022, 144, 10844–10853.
Yuan, J. L.; Huang, X. F.; Zhang, W. H.; Zhou, M. T.; Li, G. F.; Tian, F.; Chen, R. Catalytic hydrogenation of nitroarenes over Ag33 nanoclusters: The ligand effect. Inorg. Chem. 2023, 62, 17668–17677.
Li, G.; Abroshan, H.; Liu, C.; Zhuo, S.; Li, Z. M.; Xie, Y.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano 2016, 10, 7998–8005.
Yuan, S. F.; Lei, Z.; Guan, Z. J.; Wang, Q. M. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem., Int. Ed. 2021, 60, 5225–5229.
Suvlu, D.; Farshad, M.; Rasaiah, J. C. Nanocluster growth and coalescence modulated by ligands. J. Phys. Chem. C 2020, 124, 17340–17346.
Pensa, E.; Azofra, L. M.; Salvarezza, R. C.; Carro, P. Effect of ligands on the stability of gold nanoclusters. J. Phys. Chem. Lett. 2022, 13, 6475–6480.
Yang, H. Y.; Wang, Y.; Lei, J.; Shi, L.; Wu, X. H.; Mäkinen, V.; Lin, S. C.; Tang, Z. C.; He, J.; Häkkinen, H. et al. Ligand-stabilized Au13Cu x ( x = 2, 4, 8) bimetallic nanoclusters: Ligand engineering to control the exposure of metal sites. J. Am. Chem. Soc. 2013, 135, 9568–9571.
Chen, H. J.; Liu, C.; Wang, M.; Zhang, C. F.; Li, G.; Wang, F. Thermally robust silica-enclosed Au25 nanocluster and its catalysis. Chin. J. Catal. 2016, 37, 1787–1793.
Cheng, M.; Xiao, C.; Xie, Y. Photocatalytic nitrogen fixation: The role of defects in photocatalysts. J. Mater. Chem. A 2019, 7, 19616–19633.
Li, Y.; Zang, Q. X.; Dong, X. Y.; Wang, Z. Y.; Luo, P.; Luo, X. M.; Zang, S. Q. Atomically precise enantiopure bimetallic Janus clusters. ACS Cent. Sci. 2022, 8, 1258–1264.
Kang, X.; Zhu, M. Z. Heterostructured intermetallic Janus system with atomic precision. ACS Cent. Sci. 2022, 8, 1235–1237.
Kawawaki, T.; Kataoka, Y.; Hirata, M.; Akinaga, Y.; Takahata, R.; Wakamatsu, K.; Fujiki, Y.; Kataoka, M.; Kikkawa, S.; Alotabi, A. S. et al. Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster. Angew. Chem., Int. Ed. 2021, 60, 21340–21350.
Xiao, Z. H.; Xie, C.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Recent advances in defect electrocatalysts: Preparation and characterization. J. Energy Chem. 2021, 53, 208–225.
Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.
Onofri, C.; Sabathier, C.; Baumier, C.; Bachelet, C.; Drouan, D.; Gérardin, M.; Legros, M. Extended defect change in UO2 during in situ TEM annealing. Acta Mater. 2020, 196, 240–251.
Zheng, J. Y.; Lyu, Y. H.; Xie, C.; Wang, R. L.; Tao, L.; Wu, H. B.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Defect-enhanced charge separation and transfer within protection layer/semiconductor structure of photoanodes. Adv. Mater. 2018, 30, 1801773.
Wolf, M. J.; Castleton, C. W. M.; Hermansson, K.; Kullgren, J. STM images of anionic defects at CeO2(111)-A theoretical perspective. Front. Chem. 2019, 7, 212.
Setvín, M.; Wagner, M.; Schmid, M.; Parkinson, G. S.; Diebold, U. Surface point defects on bulk oxides: Atomically-resolved scanning probe microscopy. Chem. Soc. Rev. 2017, 46, 1772–1784.
Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.
Zheng, J. Y.; Lyu, Y. H.; Wang, R. L.; Xie, C.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat. Commun. 2018, 9, 3572.
Guzman, J.; Carrettin, S.; Corma, A. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc. 2005, 127, 3286–3287.
Lee, Y.; He, G. H.; Akey, A. J.; Si, R.; Flytzani-Stephanopoulos, M.; Herman, I. P. Raman analysis of mode softening in nanoparticle CeO2− δ and Au-CeO2− δ during CO oxidation. J. Am. Chem. Soc. 2011, 133, 12952–12955.
Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.
Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.
Zhou, P.; Wang, Y. Y.; Xie, C.; Chen, C.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chem. Commun. 2017, 53, 11778–11781.
Yang, S.; Chen, S.; Xiong, L.; Liu, C.; Yu, H. Z.; Wang, S. X.; Rosi, N. L.; Pei, Y.; Zhu, M. Z. Total structure determination of Au16(S-Adm)12 and Cd1Au14(S tBu)12 and implications for the structure of Au15(SR)13. J. Am. Chem. Soc. 2018, 140, 10988–10994.
Tang, L.; Ma, A. L.; Zhang, C.; Liu, X. G.; Jin, R. C.; Wang, S. X. Total structure of bimetallic core-shell [Au42Cd40(SR)52]2− nanocluster and its implications. Angew. Chem., Int. Ed. 2021, 60, 17969–17973.
Chen, T. K.; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed. 2019, 58, 11967–11977.
Gies, A. P.; Hercules, D. M.; Gerdon, A. E.; Cliffel, D. E. Electrospray mass spectrometry study of tiopronin monolayer-protected gold nanoclusters. J. Am. Chem. Soc. 2007, 129, 1095–1104.
Liao, L. W.; Zhou, S. M.; Dai, Y. F.; Liu, L. R.; Yao, C. H.; Fu, C. F.; Yang, J. L.; Wu, Z. K. Mono-mercury doping of Au25 and the HOMO/LUMO energies evaluation employing differential pulse voltammetry. J. Am. Chem. Soc. 2015, 137, 9511–9514.
Dong, C. W.; Huang, R. W.; Chen, C. L.; Chen, J.; Nematulloev, S.; Guo, X. R.; Ghosh, A.; Alamer, B.; Hedhili, M. N.; Isimjan, T. T. et al. [Cu36H10(PET)24(PPh3)6Cl2] reveals surface vacancy defects in ligand-stabilized metal nanoclusters. J. Am. Chem. Soc. 2021, 143, 11026–11035.
Song, Z. Z.; Li, J. J.; Davis, K. D.; Li, X. F.; Zhang, J. J.; Zhang, L.; Sun, X. L. Emerging applications of synchrotron radiation X-ray techniques in single atomic catalysts. Small Methods 2022, 6, 2201078.
Masuda, S.; Tsukuda, T. Partially thiolated Au n ( n = 25, 102) clusters on layered double hydroxides anchored by electrostatic interactions: Size effect on 5-hydroxymethylfurfural oxidation catalysis. ACS Catal. 2023, 13, 16179–16187.
Gam, F.; Chantrenne, I.; Kahlal, S.; Chiu, T. H.; Liao, J. H.; Liu, C. W.; Saillard, J. Y. Alloying dichalcogenolate-protected Ag21 eight-electron nanoclusters: A DFT investigation. Nanoscale 2022, 14, 196–203.
Yan, N.; Liao, L. W.; Yuan, J. Y.; Lin, Y. J.; Weng, L. H.; Yang, J. L.; Wu, Z. K. Bimetal doping in nanoclusters: Synergistic or counteractive. Chem. Mater. 2016, 28, 8240–8247.
Kumara, C.; Aikens, C. M.; Dass, A. X-ray crystal structure and theoretical analysis of Au25– x Ag x (SCH2CH2Ph)18– alloy. J. Phys. Chem. Lett. 2014, 5, 461–466.
Kurashige, W.; Munakata, K.; Nobusada, K.; Negishi, Y. Synthesis of stable Cu n Au25− n nanoclusters ( n = 1–9) using selenolate ligands. Chem. Commun. 2013, 49, 5447–5449.
Gottlieb, E.; Qian, H. F.; Jin, R. C. Atomic-level alloying and de-alloying in doped gold nanoparticles. Chem. —Eur. J. 2013, 19, 4238–4243.
Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2209–2214.
Li, S. T.; Alfonso, D.; Nagarajan, A. V.; House, S. D.; Yang, J. C.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. Monopalladium substitution in gold nanoclusters enhances CO2 electroreduction activity and selectivity. ACS Catal. 2020, 10, 12011–12016.
Zhang, W.; Thiess, A.; Zalden, P.; Zeller, R.; Dederichs, P. H.; Raty, J. Y.; Wuttig, M.; Blügel, S.; Mazzarello, R. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. Nat. Mater. 2012, 11, 952–956.
Wang, Q. C.; Xue, X. X.; Lei, Y. P.; Wang, Y. C.; Feng, Y. X.; Xiong, X.; Wang, D. S.; Li, Y. D. Engineering of electronic states on Co3O4 ultrathin nanosheets by cation substitution and anion vacancies for oxygen evolution reaction. Small 2020, 16, 2001571.
Gao, S.; Sun, Z. T.; Liu, W.; Jiao, X. C.; Zu, X. L.; Hu, Q. T.; Sun, Y. F.; Yao, T.; Zhang, W. H.; Wei, S. Q. et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat. Commun. 2017, 8, 14503.
Li, K.; Zhang, R. R.; Gao, R. J.; Shen, G. Q.; Pan, L.; Yao, Y. D.; Yu, K. H.; Zhang, X. W.; Zou, J. J. Metal-defected spinel Mn x Co3− x O4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction. Appl. Catal. B 2019, 244, 536–545.
Yang, J.; Wang, Y.; Lagos, M. J.; Manichev, V.; Fullon, R.; Song, X. J.; Voiry, D.; Chakraborty, S.; Zhang, W. J.; Batson, P. E. et al. Single atomic vacancy catalysis. ACS Nano 2019, 13, 9958–9964.
Zhu, M. H.; Tian, P. F.; Cao, X. Y.; Chen, J. C.; Pu, T. C.; Shi, B. F.; Xu, J.; Moon, J.; Wu, Z. L.; Han, Y. F. Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation. Appl. Catal. B 2021, 282, 119561.
Zhao, S. H.; Yang, Y.; Bi, F. K.; Chen, Y. F.; Wu, M. H.; Zhang, X. D.; Wang, G. Oxygen vacancies in the catalyst: Efficient degradation of gaseous pollutants. Chem. Eng. J. 2023, 454, 140376.
Bao, Y. Z.; Wu, X. H.; Yin, B.; Kang, X.; Lin, Z. D.; Deng, H. J.; Yu, H. Z.; Jin, S.; Chen, S.; Zhu, M. Z. Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution. Chem. Sci. 2022, 13, 14357–14365.
Cai, X.; Saranya, G.; Shen, K. Q.; Chen, M. Y.; Si, R.; Ding, W. P.; Zhu, Y. Reversible switching of catalytic activity by shuttling an atom into and out of gold nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9964–9968.
Nematulloev, S.; Sagadevan, A.; Alamer, B.; Shkurenko, A.; Huang, R. W.; Yin, J.; Dong, C. W.; Yuan, P.; Yorov, K. E.; Karluk, A. A. et al. Atomically precise defective copper nanocluster catalysts for highly selective C−C cross-coupling reactions. Angew. Chem., Int. Ed. 2023, 62, e202303572.
Liu, Z. H.; Tan, H.; Li, B.; Hu, Z. H.; Jiang, D. E.; Yao, Q. F.; Wang, L.; Xie, J. P. Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters. Nat. Commun. 2023, 14, 3374.
Sun, F.; Tang, Q. The ligand effect on the interface structures and electrocatalytic applications of atomically precise metal nanoclusters. Nanotechnology 2021, 32, 352001.
Liu, Y. P.; Yu, J. L.; Lun, Y. F.; Wang, Y. W.; Wang, Y.; Song, S. Q. Ligand design in atomically precise copper nanoclusters and their application in electrocatalytic reactions. Adv. Funct. Mater. 2023, 33, 2304184.
Chevrier, D. M.; Raich, L.; Rovira, C.; Das, A.; Luo, Z. T.; Yao, Q. F.; Chatt, A.; Xie, J. P.; Jin, R. C.; Akola, J. et al. Molecular-scale ligand effects in small gold-thiolate nanoclusters. J. Am. Chem. Soc. 2018, 140, 15430–15436.
Heinecke, C. L.; Ni, T. W.; Malola, S.; Mäkinen, V.; Wong, O. A.; Häkkinen, H.; Ackerson, C. J. Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters. J. Am. Chem. Soc. 2012, 134, 13316–13322.
Ni, T. W.; Tofanelli, M. A.; Phillips, B. D.; Ackerson, C. J. Structural basis for ligand exchange on Au25(SR)18. Inorg. Chem. 2014, 53, 6500–6502.
Tracy, J. B.; Crowe, M. C.; Parker, J. F.; Hampe, O.; Fields-Zinna, C. A.; Dass, A.; Murray, R. W. Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18− x (SR) x . J. Am. Chem. Soc. 2007, 129, 16209–16215.
Zeng, C. J.; Chen, Y. X.; Das, A.; Jin, R. C. Transformation chemistry of gold nanoclusters: From one stable size to another. J. Phys. Chem. Lett. 2015, 6, 2976–2986.
Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. C. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem., Int. Ed. 2012, 51, 13114–13118.
Zhao, J. T.; Ziarati, A.; Rosspeintner, A.; Bürgi, T. Anchoring of metal complexes on au25 nanocluster for enhanced photocoupled electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2024, 63, e202316649.
Nieto-Ortega, B.; Bürgi, T. Vibrational properties of thiolate-protected gold nanoclusters. Acc. Chem. Res. 2018, 51, 2811–2819.
Wang, Y. N.; Makkonen, E.; Chen, X.; Bürgi, T. Absolute configuration retention of a configurationally labile ligand during dynamic processes of thiolate protected gold clusters. Chem. Sci. 2021, 12, 9413–9419.
Zhang, Q. F.; Williard, P. G.; Wang, L. S. Polymorphism of phosphine-protected gold nanoclusters: Synthesis and characterization of a new 22-gold-atom cluster. Small 2016, 12, 2518–2525.
Lei, Z.; Pei, X. L.; Guan, Z. J.; Wang, Q. M. Full protection of intensely luminescent gold(I)-silver(I) cluster by phosphine ligands and inorganic anions. Angew. Chem., Int. Ed. 2017, 56, 7117–7120.
Wang, T.; Zhang, W. H.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. An alkynyl-protected Au40 nanocluster featuring PhCC–Au–P^P motifs. Chem. Commun. 2018, 54, 10367–10370.
Malola, S.; Häkkinen, H. Chiral footprint of the ligand layer in the all-alkynyl-protected gold nanocluster Au144(CCPhF)60. Chem. Commun. 2019, 55, 9460–9462.
Luo, G. G.; Guo, Q. L.; Wang, Z.; Sun, C. F.; Lin, J. Q.; Sun, D. New protective ligands for atomically precise silver nanoclusters. Dalton Trans. 2020, 49, 5406–5415.
Xia, Y. H.; Fang, J. J.; Xia, X. Y.; Liu, Z.; Xie, Y. P.; Lu, X. Silver clusters coprotected by different diphosphine and thiol ligands. Cryst. Growth Des. 2022, 22, 5658–5665.
Wang, J. Q.; He, R. L.; Liu, W. D.; Feng, Q. Y.; Zhang, Y. E.; Liu, C. Y.; Ge, J. X.; Wang, Q. M. Integration of metal catalysis and organocatalysis in a metal nanocluster with anchored proline. J. Am. Chem. Soc. 2023, 145, 12255–12263.
Cao, Y. T.; Fung, V.; Yao, Q. F.; Chen, T. K.; Zang, S. Q.; Jiang, D. E.; Xie, J. P. Control of single-ligand chemistry on thiolated Au25 nanoclusters. Nat. Commun. 2020, 11, 5498.
Masuda, S.; Takano, S.; Yamazoe, S.; Tsukuda, T. Synthesis of active, robust and cationic Au25 cluster catalysts on double metal hydroxide by long-term oxidative aging of Au25(SR)18. Nanoscale 2022, 14, 3031–3039.
Sakamoto, K.; Masuda, S.; Takano, S.; Tsukuda, T. Partially thiolated Au25 cluster anchored on carbon support via noncovalent ligand-support interactions: Active and robust catalyst for aerobic oxidation of alcohols. ACS Catal. 2023, 13, 3263–3271.
Fang, J.; Zhang, B.; Yao, Q. F.; Yang, Y.; Xie, J. P.; Yan, N. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord. Chem. Rev. 2016, 322, 1–29.
Li, Y. W.; Kim, H. K.; McGillicuddy, R. D.; Zheng, S. L.; Anderton, K. J.; Stec, G. J.; Lee, J.; Cui, D. T.; Mason, J. A. A double open-shelled Au43 nanocluster with increased catalytic activity and stability. J. Am. Chem. Soc. 2023, 145, 9304–9312.
Liu, C.; Li, Y. S.; He, Z. B.; Yang, Y.; Wu, C.; Fan, W. G.; Xu, W. W.; Li, M. B. Reduction-oxidation cascade strategy for reforming a Au13-kerneled gold thiolate nanocluster. J. Phys. Chem. Lett. 2023, 14, 11558–11564.
Lin, X. Z.; Ma, W. G.; Sun, K. J.; Sun, B.; Fu, X. M.; Ren, X. Q.; Liu, C.; Huang, J. H. [AuAg26(SR)18S]− nanocluster: Open shell structure and high faradaic efficiency in electrochemical reduction of CO2 to CO. J. Phys. Chem. Lett. 2021, 12, 552–557.
Tan, Y. S.; Sun, G. L.; Jiang, T. T.; Liu, D.; Li, Q. Z.; Yang, S.; Chai, J. S.; Gao, S.; Yu, H. Z.; Zhu, M. Z. Symmetry breaking enhancing the activity of electrocatalytic CO2 reduction on an icosahedron-kernel cluster by Cu atoms regulation. Angew. Chem., Int. Ed. 2024, 63, e202317471.
Chen, T. X.; Ye, L.; Lo, T. W. B. Designing the electronic and geometric structures of single-atom and nanocluster catalysts. J. Mater. Chem. A 2021, 9, 18773–18784.
López-Hernández, I.; Truttmann, V.; Barrabés, N.; Rupprechter, G.; Rey, F.; Mengual, J.; Palomares, A. E. Gold nanoclusters supported on different materials as catalysts for the selective alkyne semihydrogenation. Catal. Today 2022, 394–396, 34–40.
Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.
Wang, H.; Liu, X. Y.; Yang, W. J.; Mao, G. Y.; Meng, Z.; Wu, Z. K.; Jiang, H. L. Surface-clean Au25 nanoclusters in modulated microenvironment enabled by metal-organic frameworks for enhanced catalysis. J. Am. Chem. Soc. 2022, 144, 22008–22017.
Xiao, Y.; Mo, Q. L.; Wu, G.; Wang, K.; Ge, X. Z.; Xu, S. R.; Li, J. L.; Wu, Y.; Xiao, F. X. Charge modulation over atomically precise metal nanoclusters via non-conjugated polymers for photoelectrochemical water oxidation. J. Mater. Chem. A 2023, 11, 2402–2411.
Zhang, R. R.; Pan, L.; Guo, B. B.; Huang, Z. F.; Chen, Z. X.; Wang, L.; Zhang, X. W.; Guo, Z. Y.; Xu, W.; Loh, K. P. et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281.
Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.
497
Views
157
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).