AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (26 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Confined metal-acid units for boosting benzene hydroalkylation via efficient activation of key intermediate

Jianpeng Li1,§Kaihang Sun1,§Jinyu Huang1Yongheng Jia1Shufang Zhao2Young Dok Kim2Li Han1Baojun Li1Jie Feng1 ( )Zhongyi Liu1Zhikun Peng1 ( )
College of Chemistry, Henan Institutes of Advanced Technology, College of Ecology and Environment, State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450001, China
Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea

§ Jianpeng Li and Kaihang Sun contributed equally to this work.

Show Author Information

Graphical Abstract

Experimental and theoretical results show that the conversion of cyclohexene to cyclohexane carbocation is both kinetically and thermodynamically favorable on the integrated metal-acid sites of encapsulated catalysts, increasing the activation frequency of cyclohexene and enhancing hydroalkylation performance.

Abstract

Precisely tuning the micro-nanoscale characteristics and synergistic effect of metal-acid sites to regulate the distribution of hydroconversion products are significant but challenging. The protonated carbocation intermediates triggered by tandem reaction on metal-acid region hinder target product formation due to their high reactivity and instability. Supported M/Zeolite hydroconversion catalysts, which often excel in simple synthesis, ease of separation and recyclability. However, they usually consist of sterically unconstrained metal centers which are isolated from acid sites, only providing limited coupling-selectivity to target product. Herein, metal nanoparticles enveloped in acidic zeolite frameworks were developed and used for investigating the process of hydroalkylation of benzene to cyclohexylbenzene. We show that appropriate metal encapsulation comprising adequate efficient metal-acid units successfully avoids the more thermodynamically favorable hydrogenation of cyclohexene to cyclohexane, but steers to alkylation of cyclohexene with benzene to cyclohexylbenzene. This resulted in the highest cyclohexylbenzene yield of 47.7% among the reported work, and surpassed the performance of all supported M/Zeolite catalysts. Experimental and theoretical results supported that the abundant bifunctional metal-acid units enhance the activation frequency and probability of intermediate cyclohexene. This work might provide insights for the integration strategy of dual active site and guidance for the construction of efficient “metal-acid balance” in tandem reactions.

Electronic Supplementary Material

Download File(s)
7138_ESM.pdf (6.5 MB)

References

[1]

Qi, G. D.; Davies, T. E.; Nasrallah, A.; Sainna, M. A.; Howe, A. G. R.; Lewis, R. J.; Quesne, M.; Catlow, C. R. A.; Willock, D. J.; He, Q. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 2022, 5, 45–54.

[2]

Muravev, V.; Parastaev, A.; van den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 2023, 380, 1174–1179.

[3]

Zhu, Q. Y.; Zhou, H.; Wang, L.; Wang, L.; Wang, C. T.; Wang, H.; Fang, W.; He, M. Y.; Wu, Q.; Xiao, F. S. Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals. Nat. Catal. 2022, 5, 1030–1037.

[4]

Deng, X.; Qin, B.; Liu, R. Z.; Qin, X. T.; Dai, W. L.; Wu, G. J.; Guan, N. J.; Ma, D.; Li, L. D. Zeolite-encaged isolated platinum ions enable heterolytic dihydrogen activation and selective hydrogenations. J. Am. Chem. Soc. 2021, 143, 20898–20906.

[5]

Wang, W. Y.; Zhou, W.; Tang, Y. C.; Cao, W. C.; Docherty, S. R.; Wu, F. W.; Cheng, K.; Zhang, Q. H.; Copéret, C.; Wang, Y. Selective oxidation of methane to methanol over Au/H-MOR. J. Am. Chem. Soc. 2023, 145, 12928–12934.

[6]

Tong, Z. K.; Li, X.; Dong, J. Y.; Gao, R.; Deng, Q.; Wang, J.; Zeng, Z. L.; Zou, J. J.; Deng, S. G. Adsorption configuration-determined selective hydrogenative ring opening and ring rearrangement of furfural over metal phosphate. ACS Catal. 2021, 11, 6406–6415.

[7]

Meng, G.; Lan, W.; Zhang, L. L.; Wang, S. B.; Zhang, T. H.; Zhang, S.; Xu, M.; Wang, Y.; Zhang, J.; Yue, F. X. et al. Synergy of single atoms and Lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. J. Am. Chem. Soc. 2023, 145, 12884–12893.

[8]

Song, M.; Eom, E.; Shin, J. W.; Cho, H. S.; Kim, J. C.; Jo, C. Mercaptoamine-assisted post-encapsulation of metal nanoparticles within preformed zeolites and their analogues for hydroisomerization and methane decomposition. Angew. Chem., Int. Ed. 2023, 62, e202303503.

[9]

Luo, Z. C.; Liu, C.; Radu, A.; de Waard, D. F.; Wang, Y.; de Bueren, J. T. B.; Kouris, P. D.; Boot, M. D.; Xiao, J.; Zhang, H. Y. et al. Carbon–carbon bond cleavage for a lignin refinery. Nat. Chem. Eng. 2024, 1, 61–72.

[10]

Kaucký, D.; Pilař, R.; Kukula, P.; Bartáček, J.; Morávková, J.; Sazama, P. Low-temperature selective transformation of diethylbenzene to isobutane and cyclohexanes via the interplay of Pt and acid centres in Pt/H-*BEA zeolites. J. Catal. 2022, 407, 186–197.

[11]

Chen, L. X.; Moreira, J. B.; Meyer, L. C.; Szanyi, J. Efficient and selective dual-pathway polyolefin hydro-conversion over unexpectedly bifunctional M/TiO2-anatase catalysts. Appl. Catal. B: Environ. 2023, 335, 122897.

[12]

Liu, Y. F.; Liu, Z. Q.; Hui, Y.; Wang, L.; Zhang, J.; Yi, X. F.; Chen, W.; Wang, C. T.; Wang, H.; Qin, Y. C. et al. Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson’s catalyst for hydroformylation of olefins. Nat. Commun. 2023, 14, 2531.

[13]

Yang, Q. X.; Fedorova, E. A.; Petrov, S. A.; Weiss, J.; Lund, H.; Skrypnik, A. S.; Kreyenschulte, C. R.; Bychkov, V. Y.; Matvienko, A. A.; Brueckner, A. et al. Activity and selectivity descriptors for iron carbides in CO2 hydrogenation. Appl. Catal. B: Environ. 2023, 327, 122450.

[14]

Wang, H.; Wang, L.; Lin, D.; Feng, X.; Niu, Y. M.; Zhang, B. S.; Xiao, F. S. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat. Catal. 2021, 4, 418–424.

[15]

Parastaev, A.; Muravev, V.; Osta, E. H.; Kimpel, T. F.; Simons, J. F. M.; van Hoof, A. J. F.; Uslamin, E.; Zhang, L.; Struijs, J. J. C.; Burueva, D. B. et al. Breaking structure sensitivity in CO2 hydrogenation by tuning metal-oxide interfaces in supported cobalt nanoparticles. Nat. Catal. 2022, 5, 1051–1060.

[16]

Wang, L. K.; Han, Y.; Wei, J.; Ge, Q. J.; Lu, S. J.; Mao, Y. P.; Sun, J. Dynamic confinement catalysis in Fe-based CO2 hydrogenation to light olefins. Appl. Catal. B: Environ. 2023, 328, 122506.

[17]

He, J.; Wu, Z. J.; Gu, Q. Q.; Liu, Y. S.; Chu, S. Q.; Chen, S. H.; Zhang, Y. F.; Yang, B.; Chen, T. H.; Wang, A. Q. et al. Zeolite-tailored active site proximity for the efficient production of pentanoic biofuels. Angew. Chem., Int. Ed. 2021, 60, 23713–23721.

[18]

Song, Y. H.; Zhang, M.; Fan, G. L.; Yang, L.; Li, F. Combining a supported Ru catalyst with HBeta zeolite to construct a high-performance bifunctional catalyst for one-step cascade transformation of benzene to cyclohexylbenzene. Ind. Eng. Chem. Res. 2022, 61, 18663–18675.

[19]

Zhang, Y. J.; Yang, Y. S.; Hou, Q. D.; Xu, E. Z.; Wang, L.; Li, F.; Wei, M. Metal-acid bifunctional catalysts toward tandem reaction: One-step hydroalkylation of benzene to cyclohexylbenzene. ACS Appl. Mater. Interfaces 2022, 14, 31998–32008.

[20]

Lohr, T. L.; Marks, T. J. Orthogonal tandem catalysis. Nat. Chem. 2015, 7, 477–82.

[21]

Cho, H. J.; Kim, D.; Li, S.; Su, D.; Ma, D.; Xu, B. J. Molecular-level proximity of metal and acid sites in zeolite-encapsulated Pt nanoparticles for selective multistep tandem catalysis. ACS Catal. 2020, 10, 3340–3348.

[22]

Huang, J. Y.; Li, Z. Q.; Yang, J. Y.; Peng, Z. K.; Liu, Q. Y.; Liu, Z. Y. Identification of metal/acid matching balance over bifunctional Pd/Hβ toward benzene hydroalkylation. Ind. Eng. Chem. Res. 2021, 60, 2326–2336.

[23]

Li, Z. Q.; Fu, X. X.; Gao, C. Y.; Huang, J. Y.; Li, B. J.; Yang, Y. P.; Gao, J.; Shen, Y. L.; Peng, Z. K.; Yang, J. H. et al. Enhancing the matching of acid/metal balance by engineering an extra Si–Al framework outside the Pd/HBeta catalyst towards benzene hydroalkylation. Catal. Sci. Technol. 2020, 10, 1467–1476.

[24]

Feng, J.; Liu, Q. Y.; Li, H. J.; Song, Z. X.; Dong, L.; Zhao, S. F.; Kim, Y. D.; Liu, Z. Y.; Peng, Z. K. Tuning the selectivity of benzene hydroalkylation over PdZn/HBeta catalysts: Identification of lattice contraction and electronic properties. Catal. Sci. Technol. 2023, 13, 1470–1481.

[25]

Ji, Y.; Gao, P.; Zhao, Z. C.; Xiao, D.; Han, Q.; Chen, H. Y.; Gong, K.; Chen, K. Z.; Han, X. W.; Bao, X. H. et al. Oxygenate-based routes regulate syngas conversion over oxide-zeolite bifunctional catalysts. Nat. Catal. 2022, 5, 594–604.

[26]

Berdugo-Díaz, C. E.; Manetsch, M. T.; Sik Yun, Y.; Lee, J.; Luo, J.; Chen, X.; Flaherty, D. W. Ester reduction with H2 on bifunctional metal-acid catalysts: Implications of metal identity on rates and selectivities. Angew. Chem., Int. Ed. 2023, 62, 202216165.

[27]

Gutierrez-Acebo, E.; Leroux, C.; Chizallet, C.; Schuurman, Y.; Bouchy, C. Metal/acid bifunctional catalysis and intimacy criterion for ethylcyclohexane hydroconversion: When proximity does not matter. ACS Catal. 2018, 8, 6035–6046.

[28]

Zecevic, J.; Vanbutsele, G.; de Jong, K. P.; Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 2015, 528, 245–248.

[29]

Vance, B. C.; Kots, P. A.; Wang, C.; Hinton, Z. R.; Quinn, C. M.; Epps, T. H.; Korley, L. T. J.; Vlachos, D. G. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. Appl. Catal. B: Environ. 2021, 299, 120483.

[30]

Zhao, C.; Song, W. J.; Lercher, J. A. Aqueous phase hydroalkylation and hydrodeoxygenation of phenol by dual functional catalysts comprised of Pd/C and H/La-BEA. ACS Catal. 2012, 2, 2714–2723.

[31]

Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C. T.; Meng, X. J.; Yang, H.; Mesters, C. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193–197.

[32]

Yang, J. Q.; He, Y.; He, J.; Liu, Y. S.; Geng, H. W.; Chen, S. H.; Lin, L.; Liu, M.; Chen, T. H.; Jiang, Q. K. et al. Enhanced catalytic performance through in situ encapsulation of ultrafine Ru clusters within a high-aluminum zeolite. ACS Catal. 2022, 12, 1847–1856.

[33]

Klein, P.; Pashkova, V.; Thomas, H. M.; Whittleton, S. R.; Brus, J.; Kobera, L.; Dedecek, J.; Sklenak, S. Local structure of cationic sites in dehydrated zeolites inferred from 27Al magic-angle spinning NMR and density functional theory calculations. A study on Li-, Na-, and K-chabazite. J. Phys. Chem. C 2016, 120, 14216–14225.

[34]

Gao, J.; Zheng, Y. T.; Jehng, J. M.; Tang, Y. D.; Wachs, I. E.; Podkolzin, S. G. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science 2015, 348, 686–690.

[35]

Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. O.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.

[36]

Karatok, M.; Ngan, H. T.; Jia, X. W.; O’Connor, C. R.; Boscoboinik, J. A.; Stacchiola, D. J.; Sautet, P.; Madix, R. J. Achieving ultra-high selectivity to hydrogen production from formic acid on Pd–Ag alloys. J. Am. Chem. Soc. 2023, 145, 5114–5124.

[37]

Song, I.; Koleva, I. Z.; Aleksandrov, H. A.; Chen, L. X.; Heo, J.; Li, D. S.; Wang, Y.; Szanyi, J.; Khivantsev, K. Ultrasmall Pd clusters in FER zeolite alleviate CO poisoning for effective low-temperature carbon monoxide oxidation. J. Am. Chem. Soc. 2023, 145, 27493–27499.

[38]

Siani, A.; Wigal, K.; Alexeev, O.; Amiridis, M. Synthesis and characterization of γ–Al2O3-supported Pt catalysts from Pt4 and Pt6 clusters formed in aqueous solutions. J. Catal. 2008, 257, 16–22.

[39]

Korpelin, V.; Sahoo, G.; Ikonen, R.; Honkala, K. ReO x as a Brønsted acidic modifier in glycerol hydrodeoxygenation: Computational insight into the balance between acid and metal catalysis. J. Catal. 2023, 422, 12–23.

[40]

Berdugo-Díaz, C. E.; Manetsch, M. T.; Lee, J.; Sik Yun, Y.; Yancey, D. F.; Rozeveld, S. J.; Luo, J.; Chen, X.; Flaherty, D. W. Ester reduction on bifunctional metal-acid catalysts: Effect of metal to acid ratio. J. Catal. 2024, 430, 115346.

[41]

Zhou, A. J.; Zhang, J. X.; Yang, H.; Shang, S. J.; Zhang, A. F.; Song, C. S.; Guo, X. W. Synergetic and efficient alkylation of benzene with ethane over Pt/ZSM-5 nanosheet bifunctional catalysts to ethylbenzene. Fuel 2023, 342, 127764.

[42]

Cui, X. Y.; He, H. R.; Xie, D.; Zheng, L. X.; Wang, X. B.; Jiang, Z.; Xu, D. H.; Guo, Y. Mechanism of sulfur poisoning to Ru-based catalysts in supercritical water gasification of glycerol: From experiment to combined DFT and kinetics studies. Chem. Eng. J. 2023, 464, 142622.

[43]

Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.

[44]

Liu, Y.; Liu, Q. Y.; Sun, K. H.; Zhao, S. F.; Kim, Y. D.; Yang, Y. P.; Liu, Z. Y.; Peng, Z. K. Identification of the encapsulation effect of heteropolyacid in the Si–Al framework toward benzene alkylation. ACS Catal. 2022, 12, 4765–4776.

[45]

Ben David, R.; Ben Yaacov, A.; Eren, B. Hydrogen exchange through hydrogen bonding between methanol and water in the adsorbed state on Cu(111). J. Phys. Chem. Lett. 2023, 14 (10), 2644–2650.

[46]

Hou, Z. Q.; Dai, L. Y.; Liu, Y. X.; Deng, J. G.; Jing, L.; Pei, W. B.; Gao, R. Y.; Feng, Y.; Dai, H. X. Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium-cobalt catalysts for benzene oxidation. Appl. Catal. B: Environ. 2021, 285, 119844.

[47]

Zhang, Q.; Gao, S. Q.; Yu, J. H. Metal sites in zeolites: Synthesis, characterization, and catalysis. Chem. Rev. 2023, 123, 6039–6106.

Nano Research
Article number: 94907138
Cite this article:
Li J, Sun K, Huang J, et al. Confined metal-acid units for boosting benzene hydroalkylation via efficient activation of key intermediate. Nano Research, 2025, 18(2): 94907138. https://doi.org/10.26599/NR.2025.94907138
Topics:

718

Views

187

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 12 September 2024
Revised: 29 October 2024
Accepted: 18 November 2024
Published: 07 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return