AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (49.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

An enzyme-gated bioorthogonal catalytic nanoreactor for tumor-specific prodrug activation

Yuheng Guo1Fang Jiang1Xiaohui Zhu2Wen He1Sijie Song1Xuecen Shou1Mengnan Wu1Ting Wu1Tingjing Huang3Zhi Ye4Xuyang Wang1Zhitong Chen3Yu He1( )Yuhang Yao1 ( )Zhaowei Chen1 ( )Huanghao Yang1
New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
Food Inspection and Quarantine Technical Center of Shenzhen Customs District of the People's Republic of China, Shenzhen 518045, China
Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Department of Chemistry, University College London, London WC1H 0AJ, UK
Show Author Information

Graphical Abstract

This research presents an enzyme-gated bioorthogonal catalytic nanoreactor constructed from hyaluronic acid-coated dendritic mesoporous silica nanoparticles that covalently immobilizes Ru(II) catalysts. This approach mitigates nonspecific metal leakage, a common issue with conventional immobilization methods that rely on noncovalent interactions. Furthermore, the enzyme-gated catalyst exposure also prevents off-target activation of prodrugs, thereby enhancing localized treatment while minimizing side effects.

Abstract

Bioorthogonal catalysis mediated by abiotic transition metal catalysts (TMCs) is emerging as a momentum-gathering strategy for in situ generation of therapeutics. However, the unpredictable leakage and deposition of TMCs in living systems easily lead to nonspecific exposure of catalysts and concomitant off-target prodrug activation. Herein, we propose an enzyme-gated bioorthogonal catalytic nanoreactor constructed from hyaluronic acid (HA)-coated dendritic mesoporous silica nanoparticles (DMSNs), where the latter serves as a host for robustly immobilizing organometallic Ru(II) catalysts via covalent interactions. The covalent immobilization of catalysts within the nanoscaffold effectively avoids nonspecific metal leakage under biological conditions. Importantly, the grafted HA not only acts as a "gatekeeper" preventing unintended catalyst exposure in nontargeted tissues but also acts as a ligand targeting CD44 overexpressed cancer cells. Upon receptor-mediated endocytosis into tumor cells, HA is degraded by the overexpressed hyaluronidase-1, leading to the channel opening of the nanoreactors and hence gaining the accessibility of Ru(II) complexes to prodrugs. The therapeutic potency of this enzyme-gated nanoreactor in mediating site-specific activation of caged prodrugs was systematically demonstrated both in cellular settings and in tumor-bearing murine models. This enzyme-gated strategy enhances the efficacy of localized treatment while avoiding off-target prodrug activation, paving the way for advancing bioorthogonal catalysis for disease management in a safe and effective way.

Electronic Supplementary Material

Download File(s)
7134_ESM.pdf (9.1 MB)

References

[1]

Scinto, S. L.; Bilodeau, D. A.; Hincapie, R.; Lee, W.; Nguyen, S. S.; Xu, M. H.; am Ende, C. W.; Finn, M. G.; Lang, K.; Lin, Q. et al. Bioorthogonal chemistry. Nat. Rev. Methods Primers 2021, 1, 30.

[2]

Pani, S.; Qiu, T.; Kentala, K.; Azizi, S. A.; Dickinson, B. C. Bioorthogonal masked acylating agents for proximity-dependent RNA labelling. Nat. Chem. 2024, 16, 717–726.

[3]

Zhu, Y. C.; Ding, W. L.; Chen, Y. L.; Shan, Y.; Liu, C.; Fan, X. Y.; Lin, S. X.; Chen, P. R. Genetically encoded bioorthogonal tryptophan decaging in living cells. Nat. Chem. 2024, 16, 533–542.

[4]

Li, J.; Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol. 2016, 12, 129–137.

[5]

Wang, X. Z.; Liew, S. S.; Huang, J. S.; Hu, Y. X.; Wei, X.; Pu, K. Y. Dual-locked enzyme-activatable bioorthogonal fluorescence turn-on imaging of senescent cancer cells. J. Am. Chem. Soc. 2024, 146, 22689–22698.

[6]

Liao, X. F.; Qin, G.; Liu, Z. Q.; Ren, J. S.; Qu, X. G. Bioorthogonal aptamer-ATTEC conjugates for degradation of alpha-synuclein via autophagy-lysosomal pathway. Small 2024, 20, 2306760.

[7]

Song, J. L.; Wu, C. L.; Zhao, Y.; Yang, M.; Yao, Q. X.; Gao, Y. Bioorthogonal disassembly of tetrazine bearing supramolecular assemblies inside living cells. Small 2022, 18, 2104772.

[8]

Liu, Z. W.; Sun, M. Y.; Zhang, W. T.; Ren, J. S.; Qu, X. G. Target-specific bioorthogonal reactions for precise biomedical applications. Angew. Chem., Int. Ed. 2023, 62, e202308396.

[9]

Liu, X.; Huang, T. J.; Chen, Z. W.; Yang, H. H. Progress in controllable bioorthogonal catalysis for prodrug activation. Chem. Commun. 2023, 59, 12548–12559.

[10]

Liang, T. X. Z.; Chen, Z. W.; Li, H. J.; Gu, Z. Bioorthogonal catalysis for biomedical applications. Trends Chem. 2022, 4, 157–168.

[11]

Huang, R.; Hirschbiegel, C. M.; Lehot, V.; Liu, L.; Cicek, Y. A.; Rotello, V. M. Modular fabrication of bioorthogonal nanozymes for biomedical applications. Adv. Mater. 2024, 36, 2300943.

[12]

Bai, Y. G.; Chen, J. F.; Zimmerman, S. C. Designed transition metal catalysts for intracellular organic synthesis. Chem. Soc. Rev. 2018, 47, 1811–1821.

[13]

James, C. C.; de Bruin, B.; Reek, J. N. H. Transition metal catalysis in living cells: Progress, challenges, and novel supramolecular solutions. Angew. Chem., Int. Ed. 2023, 62, e202306645.

[14]

Chen, Z. W.; Li, H. J.; Bian, Y. J.; Wang, Z. J.; Chen, G. J.; Zhang, X. D.; Miao, Y. M.; Wen, D.; Wang, J. Q.; Wan, G. et al. Bioorthogonal catalytic patch. Nat. Nanotechnol. 2021, 16, 933–941.

[15]

Weiss, J. T.; Dawson, J. C.; Macleod, K. G.; Rybski, W.; Fraser, C.; Torres-Sánchez, C.; Patton, E. E.; Bradley, M.; Carragher, N. O.; Unciti-Broceta, A. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun. 2014, 5, 3277.

[16]

Bray, T. L.; Salji, M.; Brombin, A.; Pérez-López, A. M.; Rubio-Ruiz, B.; Galbraith, L. C. A.; Patton, E. E.; Leung, H. Y.; Unciti-Broceta, A. Bright insights into palladium-triggered local chemotherapy. Chem. Sci. 2018, 9, 7354–7361.

[17]

Ji, X. Y.; Pan, Z. X.; Yu, B. C.; De La Cruz, L. K.; Zheng, Y. Q.; Ke, B. W.; Wang, B. H. Click and release: Bioorthogonal approaches to “on-demand” activation of prodrugs. Chem. Soc. Rev. 2019, 48, 1077–1094.

[18]

Sousa-Castillo, A.; Mariño-López, A.; Puértolas, B.; Correa-Duarte, M. A. Nanostructured heterogeneous catalysts for bioorthogonal reactions. Angew. Chem., Int. Ed. 2023, 62, e202215427.

[19]

Hirschbiegel, C. M.; Zhang, X. Z.; Huang, R.; Cicek, Y. A.; Fedeli, S.; Rotello, V. M. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv. Drug Deliv. Rev. 2023, 195, 114730.

[20]

Chen, Y. Y.; Wu, T.; Xie, S. S.; Bai, Y. G.; Xing, H. Orientation-controlled membrane anchoring of bioorthogonal catalysts on live cells via liposome fusion-based transport. Sci. Adv. 2023, 9, eadg2583.

[21]

Rubio-Ruiz, B.; Pérez-López, A. M.; Uson, L.; Ortega-Liebana, M. C.; Valero, T.; Arruebo, M.; Hueso, J. L.; Sebastian, V.; Santamaria, J.; Unciti-Broceta, A. In cellulo bioorthogonal catalysis by encapsulated AuPd nanoalloys: Overcoming intracellular deactivation. Nano Lett. 2023, 23, 804–811.

[22]

Tonga, G. Y.; Jeong, Y.; Duncan, B.; Mizuhara, T.; Mout, R.; Das, R.; Kim, S. T.; Yeh, Y. C.; Yan, B.; Hou, S. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 2015, 7, 597–603.

[23]

Sancho-Albero, M.; Rubio-Ruiz, B.; Pérez-López, A. M.; Sebastián, V.; Martín-Duque, P.; Arruebo, M.; Santamaría, J.; Unciti-Broceta, A. Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat. Catal. 2019, 2, 864–872.

[24]

Yusop, R. M.; Unciti-Broceta, A.; Johansson, E. M. V.; Sánchez-Martín, R. M.; Bradley, M. Palladium-mediated intracellular chemistry. Nat. Chem. 2011, 3, 239–243.

[25]

Zeng, F.; Pan, Y. C.; Wu, M. N.; Lu, Q. L.; Qin, S. R.; Gao, Y. F.; Luan, X. W.; Chen, R. Y.; He, G. Z.; Wang, Y. Z. et al. Self-metallized whole cell vaccines prepared by microfluidics for bioorthogonally catalyzed antitumor immunotherapy. ACS Nano 2024, 18, 7923–7936.

[26]

Cao, S. P.; Ivanov, T.; Heuer, J.; Ferguson, C. T. J.; Landfester, K.; Caire da Silva, L. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis. Nat. Commun. 2024, 15, 39.

[27]

Zhang, X. Z.; Lin, S. C.; Huang, R.; Gupta, A.; Fedeli, S.; Cao-Milán, R.; Luther, D. C.; Liu, Y. C.; Jiang, M. D.; Li, G. et al. Degradable ZnS-supported bioorthogonal nanozymes with enhanced catalytic activity for intracellular activation of therapeutics. J. Am. Chem. Soc. 2022, 144, 12893–12900.

[28]

Zhang, L.; Sang, Y. J.; Liu, Z. Q.; Wang, W. J.; Liu, Z. W.; Deng, Q. Q.; You, Y. W.; Ren, J. S.; Qu, X. G. Liquid metal as bioinspired and unusual modulator in bioorthogonal catalysis for tumor inhibition therapy. Angew. Chem., Int. Ed. 2023, 62, e202218159.

[29]

Kumar, A.; Lee, I. S. Designer nanoreactors for bioorthogonal catalysis. Acc. Chem. Res. 2024, 57, 413–427.

[30]

Burdick, J. A.; Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23, H41–H56.

[31]

He, Y. M.; Lei, L.; Cao, J.; Yang, X. T.; Cai, S. S.; Tong, F.; Huang, D.; Mei, H.; Luo, K.; Gao, H. L. et al. A combinational chemo-immune therapy using an enzyme-sensitive nanoplatform for dual-drug delivery to specific sites by cascade targeting. Sci. Adv. 2021, 7, eaba0776.

[32]

Toole, B. P. Hyaluronan: From extracellular glue to pericellular cue. Nat. Rev. Cancer 2004, 4, 528–539.

[33]

Chen, Z. W.; Zhao, C. Q.; Ju, E. G.; Ji, H. W.; Ren, J. S.; Binks, B. P.; Qu, X. G. Design of surface-active artificial enzyme particles to stabilize pickering emulsions for high-performance biphasic biocatalysis. Adv. Mater. 2016, 28, 1682–1688.

[34]
Hunter, R. J. Zeta Potential in Colloid Science: Principles and Applications; Academic Press: London, 1981.
[35]

Dai, J. D.; Liu, Z.; Wang, L. L.; Huang, G. M.; Song, S. J.; Chen, C.; Wu, T.; Xu, X.; Hao, C. J.; Bian, Y. J. et al. A telomerase-activated magnetic resonance imaging probe for consecutively monitoring tumor growth kinetics and in situ screening inhibitors. J. Am. Chem. Soc. 2023, 145, 1108–1117.

[36]

van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017.

[37]

Copéret, C.; Allouche, F.; Chan, K. W.; Conley, M. P.; Delley, M. F.; Fedorov, A.; Moroz, I. B.; Mougel, V.; Pucino, M.; Searles, K. et al. Bridging the gap between industrial and well-defined supported catalysts. Angew. Chem., Int. Ed. 2018, 57, 6398–6440.

[38]

Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

[39]

Liu, G.; Choi, K. Y.; Bhirde, A.; Swierczewska, M.; Yin, J.; Lee, S. W.; Park, J. H.; Hong, J. I.; Xie, J.; Niu, G. et al. Sticky nanoparticles: A platform for siRNA delivery by a Bis(zinc(II) dipicolylamine)-functionalized, self-assembled nanoconjugate. Angew. Chem., Int. Ed. 2012, 51, 445–449.

[40]

Lv, Y. Q.; Xu, C. R.; Zhao, X. M.; Lin, C. S.; Yang, X.; Xin, X. F.; Zhang, L.; Qin, C.; Han, X. P.; Yang, L. et al. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano 2018, 12, 1519–1536.

[41]

Stern, R. Hyaluronan catabolism: A new metabolic pathway. Eur. J. Cell Biol. 2004, 83, 317–325.

[42]

Duan, H. H.; Donovan, M.; Hernandez, F.; Di Primo, C.; Garanger, E.; Schultze, X.; Lecommandoux, S. Hyaluronic-acid-presenting self-assembled nanoparticles transform a hyaluronidase HYAL1 substrate into an efficient and selective inhibitor. Angew. Chem., Int. Ed. 2020, 59, 13591–13596.

[43]

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

[44]

Cabral, H.; Li, J. J.; Miyata, K.; Kataoka, K. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2024, 2, 214–232.

[45]

Miller, M. A.; Mikula, H.; Luthria, G.; Li, R.; Kronister, S.; Prytyskach, M.; Kohler, R. H.; Mitchison, T.; Weissleder, R. Modular nanoparticulate prodrug design enables efficient treatment of solid tumors using bioorthogonal activation. ACS Nano 2018, 12, 12814–12826.

Nano Research
Article number: 94907134
Cite this article:
Guo Y, Jiang F, Zhu X, et al. An enzyme-gated bioorthogonal catalytic nanoreactor for tumor-specific prodrug activation. Nano Research, 2025, 18(2): 94907134. https://doi.org/10.26599/NR.2025.94907134
Topics:

544

Views

141

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 October 2024
Revised: 08 November 2024
Accepted: 11 November 2024
Published: 02 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return