Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Bioorthogonal catalysis mediated by abiotic transition metal catalysts (TMCs) is emerging as a momentum-gathering strategy for in situ generation of therapeutics. However, the unpredictable leakage and deposition of TMCs in living systems easily lead to nonspecific exposure of catalysts and concomitant off-target prodrug activation. Herein, we propose an enzyme-gated bioorthogonal catalytic nanoreactor constructed from hyaluronic acid (HA)-coated dendritic mesoporous silica nanoparticles (DMSNs), where the latter serves as a host for robustly immobilizing organometallic Ru(II) catalysts via covalent interactions. The covalent immobilization of catalysts within the nanoscaffold effectively avoids nonspecific metal leakage under biological conditions. Importantly, the grafted HA not only acts as a "gatekeeper" preventing unintended catalyst exposure in nontargeted tissues but also acts as a ligand targeting CD44 overexpressed cancer cells. Upon receptor-mediated endocytosis into tumor cells, HA is degraded by the overexpressed hyaluronidase-1, leading to the channel opening of the nanoreactors and hence gaining the accessibility of Ru(II) complexes to prodrugs. The therapeutic potency of this enzyme-gated nanoreactor in mediating site-specific activation of caged prodrugs was systematically demonstrated both in cellular settings and in tumor-bearing murine models. This enzyme-gated strategy enhances the efficacy of localized treatment while avoiding off-target prodrug activation, paving the way for advancing bioorthogonal catalysis for disease management in a safe and effective way.
Scinto, S. L.; Bilodeau, D. A.; Hincapie, R.; Lee, W.; Nguyen, S. S.; Xu, M. H.; am Ende, C. W.; Finn, M. G.; Lang, K.; Lin, Q. et al. Bioorthogonal chemistry. Nat. Rev. Methods Primers 2021, 1, 30.
Pani, S.; Qiu, T.; Kentala, K.; Azizi, S. A.; Dickinson, B. C. Bioorthogonal masked acylating agents for proximity-dependent RNA labelling. Nat. Chem. 2024, 16, 717–726.
Zhu, Y. C.; Ding, W. L.; Chen, Y. L.; Shan, Y.; Liu, C.; Fan, X. Y.; Lin, S. X.; Chen, P. R. Genetically encoded bioorthogonal tryptophan decaging in living cells. Nat. Chem. 2024, 16, 533–542.
Li, J.; Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol. 2016, 12, 129–137.
Wang, X. Z.; Liew, S. S.; Huang, J. S.; Hu, Y. X.; Wei, X.; Pu, K. Y. Dual-locked enzyme-activatable bioorthogonal fluorescence turn-on imaging of senescent cancer cells. J. Am. Chem. Soc. 2024, 146, 22689–22698.
Liao, X. F.; Qin, G.; Liu, Z. Q.; Ren, J. S.; Qu, X. G. Bioorthogonal aptamer-ATTEC conjugates for degradation of alpha-synuclein via autophagy-lysosomal pathway. Small 2024, 20, 2306760.
Song, J. L.; Wu, C. L.; Zhao, Y.; Yang, M.; Yao, Q. X.; Gao, Y. Bioorthogonal disassembly of tetrazine bearing supramolecular assemblies inside living cells. Small 2022, 18, 2104772.
Liu, Z. W.; Sun, M. Y.; Zhang, W. T.; Ren, J. S.; Qu, X. G. Target-specific bioorthogonal reactions for precise biomedical applications. Angew. Chem., Int. Ed. 2023, 62, e202308396.
Liu, X.; Huang, T. J.; Chen, Z. W.; Yang, H. H. Progress in controllable bioorthogonal catalysis for prodrug activation. Chem. Commun. 2023, 59, 12548–12559.
Liang, T. X. Z.; Chen, Z. W.; Li, H. J.; Gu, Z. Bioorthogonal catalysis for biomedical applications. Trends Chem. 2022, 4, 157–168.
Huang, R.; Hirschbiegel, C. M.; Lehot, V.; Liu, L.; Cicek, Y. A.; Rotello, V. M. Modular fabrication of bioorthogonal nanozymes for biomedical applications. Adv. Mater. 2024, 36, 2300943.
Bai, Y. G.; Chen, J. F.; Zimmerman, S. C. Designed transition metal catalysts for intracellular organic synthesis. Chem. Soc. Rev. 2018, 47, 1811–1821.
James, C. C.; de Bruin, B.; Reek, J. N. H. Transition metal catalysis in living cells: Progress, challenges, and novel supramolecular solutions. Angew. Chem., Int. Ed. 2023, 62, e202306645.
Chen, Z. W.; Li, H. J.; Bian, Y. J.; Wang, Z. J.; Chen, G. J.; Zhang, X. D.; Miao, Y. M.; Wen, D.; Wang, J. Q.; Wan, G. et al. Bioorthogonal catalytic patch. Nat. Nanotechnol. 2021, 16, 933–941.
Weiss, J. T.; Dawson, J. C.; Macleod, K. G.; Rybski, W.; Fraser, C.; Torres-Sánchez, C.; Patton, E. E.; Bradley, M.; Carragher, N. O.; Unciti-Broceta, A. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat. Commun. 2014, 5, 3277.
Bray, T. L.; Salji, M.; Brombin, A.; Pérez-López, A. M.; Rubio-Ruiz, B.; Galbraith, L. C. A.; Patton, E. E.; Leung, H. Y.; Unciti-Broceta, A. Bright insights into palladium-triggered local chemotherapy. Chem. Sci. 2018, 9, 7354–7361.
Ji, X. Y.; Pan, Z. X.; Yu, B. C.; De La Cruz, L. K.; Zheng, Y. Q.; Ke, B. W.; Wang, B. H. Click and release: Bioorthogonal approaches to “on-demand” activation of prodrugs. Chem. Soc. Rev. 2019, 48, 1077–1094.
Sousa-Castillo, A.; Mariño-López, A.; Puértolas, B.; Correa-Duarte, M. A. Nanostructured heterogeneous catalysts for bioorthogonal reactions. Angew. Chem., Int. Ed. 2023, 62, e202215427.
Hirschbiegel, C. M.; Zhang, X. Z.; Huang, R.; Cicek, Y. A.; Fedeli, S.; Rotello, V. M. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv. Drug Deliv. Rev. 2023, 195, 114730.
Chen, Y. Y.; Wu, T.; Xie, S. S.; Bai, Y. G.; Xing, H. Orientation-controlled membrane anchoring of bioorthogonal catalysts on live cells via liposome fusion-based transport. Sci. Adv. 2023, 9, eadg2583.
Rubio-Ruiz, B.; Pérez-López, A. M.; Uson, L.; Ortega-Liebana, M. C.; Valero, T.; Arruebo, M.; Hueso, J. L.; Sebastian, V.; Santamaria, J.; Unciti-Broceta, A. In cellulo bioorthogonal catalysis by encapsulated AuPd nanoalloys: Overcoming intracellular deactivation. Nano Lett. 2023, 23, 804–811.
Tonga, G. Y.; Jeong, Y.; Duncan, B.; Mizuhara, T.; Mout, R.; Das, R.; Kim, S. T.; Yeh, Y. C.; Yan, B.; Hou, S. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 2015, 7, 597–603.
Sancho-Albero, M.; Rubio-Ruiz, B.; Pérez-López, A. M.; Sebastián, V.; Martín-Duque, P.; Arruebo, M.; Santamaría, J.; Unciti-Broceta, A. Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat. Catal. 2019, 2, 864–872.
Yusop, R. M.; Unciti-Broceta, A.; Johansson, E. M. V.; Sánchez-Martín, R. M.; Bradley, M. Palladium-mediated intracellular chemistry. Nat. Chem. 2011, 3, 239–243.
Zeng, F.; Pan, Y. C.; Wu, M. N.; Lu, Q. L.; Qin, S. R.; Gao, Y. F.; Luan, X. W.; Chen, R. Y.; He, G. Z.; Wang, Y. Z. et al. Self-metallized whole cell vaccines prepared by microfluidics for bioorthogonally catalyzed antitumor immunotherapy. ACS Nano 2024, 18, 7923–7936.
Cao, S. P.; Ivanov, T.; Heuer, J.; Ferguson, C. T. J.; Landfester, K.; Caire da Silva, L. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis. Nat. Commun. 2024, 15, 39.
Zhang, X. Z.; Lin, S. C.; Huang, R.; Gupta, A.; Fedeli, S.; Cao-Milán, R.; Luther, D. C.; Liu, Y. C.; Jiang, M. D.; Li, G. et al. Degradable ZnS-supported bioorthogonal nanozymes with enhanced catalytic activity for intracellular activation of therapeutics. J. Am. Chem. Soc. 2022, 144, 12893–12900.
Zhang, L.; Sang, Y. J.; Liu, Z. Q.; Wang, W. J.; Liu, Z. W.; Deng, Q. Q.; You, Y. W.; Ren, J. S.; Qu, X. G. Liquid metal as bioinspired and unusual modulator in bioorthogonal catalysis for tumor inhibition therapy. Angew. Chem., Int. Ed. 2023, 62, e202218159.
Kumar, A.; Lee, I. S. Designer nanoreactors for bioorthogonal catalysis. Acc. Chem. Res. 2024, 57, 413–427.
Burdick, J. A.; Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23, H41–H56.
He, Y. M.; Lei, L.; Cao, J.; Yang, X. T.; Cai, S. S.; Tong, F.; Huang, D.; Mei, H.; Luo, K.; Gao, H. L. et al. A combinational chemo-immune therapy using an enzyme-sensitive nanoplatform for dual-drug delivery to specific sites by cascade targeting. Sci. Adv. 2021, 7, eaba0776.
Toole, B. P. Hyaluronan: From extracellular glue to pericellular cue. Nat. Rev. Cancer 2004, 4, 528–539.
Chen, Z. W.; Zhao, C. Q.; Ju, E. G.; Ji, H. W.; Ren, J. S.; Binks, B. P.; Qu, X. G. Design of surface-active artificial enzyme particles to stabilize pickering emulsions for high-performance biphasic biocatalysis. Adv. Mater. 2016, 28, 1682–1688.
Dai, J. D.; Liu, Z.; Wang, L. L.; Huang, G. M.; Song, S. J.; Chen, C.; Wu, T.; Xu, X.; Hao, C. J.; Bian, Y. J. et al. A telomerase-activated magnetic resonance imaging probe for consecutively monitoring tumor growth kinetics and in situ screening inhibitors. J. Am. Chem. Soc. 2023, 145, 1108–1117.
van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017.
Copéret, C.; Allouche, F.; Chan, K. W.; Conley, M. P.; Delley, M. F.; Fedorov, A.; Moroz, I. B.; Mougel, V.; Pucino, M.; Searles, K. et al. Bridging the gap between industrial and well-defined supported catalysts. Angew. Chem., Int. Ed. 2018, 57, 6398–6440.
Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.
Liu, G.; Choi, K. Y.; Bhirde, A.; Swierczewska, M.; Yin, J.; Lee, S. W.; Park, J. H.; Hong, J. I.; Xie, J.; Niu, G. et al. Sticky nanoparticles: A platform for siRNA delivery by a Bis(zinc(II) dipicolylamine)-functionalized, self-assembled nanoconjugate. Angew. Chem., Int. Ed. 2012, 51, 445–449.
Lv, Y. Q.; Xu, C. R.; Zhao, X. M.; Lin, C. S.; Yang, X.; Xin, X. F.; Zhang, L.; Qin, C.; Han, X. P.; Yang, L. et al. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano 2018, 12, 1519–1536.
Stern, R. Hyaluronan catabolism: A new metabolic pathway. Eur. J. Cell Biol. 2004, 83, 317–325.
Duan, H. H.; Donovan, M.; Hernandez, F.; Di Primo, C.; Garanger, E.; Schultze, X.; Lecommandoux, S. Hyaluronic-acid-presenting self-assembled nanoparticles transform a hyaluronidase HYAL1 substrate into an efficient and selective inhibitor. Angew. Chem., Int. Ed. 2020, 59, 13591–13596.
Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.
Cabral, H.; Li, J. J.; Miyata, K.; Kataoka, K. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2024, 2, 214–232.
Miller, M. A.; Mikula, H.; Luthria, G.; Li, R.; Kronister, S.; Prytyskach, M.; Kohler, R. H.; Mitchison, T.; Weissleder, R. Modular nanoparticulate prodrug design enables efficient treatment of solid tumors using bioorthogonal activation. ACS Nano 2018, 12, 12814–12826.
544
Views
141
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).