AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Single-atom iron on semi-hollow carbon synthesized by chemical-waste-vapor assistance: A superior catalyst for polychlorinated biphenyls degradation

Bingqing Wang1,2 ( )Xu Han3Jiaqiang Sun4Zhichao Yun1,2( )Yonghai Jiang1,2
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
Anhui Basic Discipline Research Center for Clean Energy and Catalysis, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
Show Author Information

Graphical Abstract

A chemical-waste-vapor-assisted strategy was developed for the synthesis of single atom irons on semi-hollow N-doped carbon. The prepared catalyst exhibited exceptional and unprecedented catalytic activity and stability for the degradation of decachlorobiphenyl.

Abstract

Single-atom site catalysts (SACs) with high atom utilization efficiencies exhibit unexpected properties, making them ideal candidate catalysts for numerous reactions. Herein, we report a chemical-waste-vapor-assisted (CWVA) strategy for the synthesis of a catalyst with single atom Fe on semi-hollow N-doped carbon (SA-Fe/SHNC). Benefitting from its atomic Fe sites, the prepared catalyst exhibited a 103-fold higher activity (0.827 vs. 0.008 molPCB-209·molM−1·h−1) and much longer time-stability (more than 50 vs. 0.5 h) than benchmarked Fe3O4 nanoparticles toward decachlorobiphenyl (PCB-209) degradation. Experiments and density functional theory calculations revealed that the highly active isolated Fe sites are responsible for the activity of Fe-SAC/SHNC. In addition, the CWVA method was shown to be applicable for synthesizing other single atoms on various structured supports, thereby providing new opportunities for the design of various structured SACs for different applications.

Electronic Supplementary Material

Download File(s)
7133_ESM.pdf (2.3 MB)

References

[1]

Huang, T.; Ling, Z. L.; Ma, J. M.; Macdonald, R. W.; Gao, H.; Tao, S.; Tian, C. G.; Song, S. J.; Jiang, W. Y. H.; Chen, L. L. et al. Human exposure to polychlorinated biphenyls embodied in global fish trade. Nat. Food 2020, 1, 292–300.

[2]

Jamieson, A. J.; Malkocs, T.; Piertney, S. B.; Fujii, T.; Zhang, Z. L. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat. Ecol. Evol. 2017, 1, 0051.

[3]

Reddy, A. V. B.; Moniruzzaman, M.; Aminabhavi, T. M. Polychlorinated biphenyls (PCBs) in the environment: Recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chem. Eng. J. 2019, 358, 1186–1207.

[4]

Vignieri, S. PCB-still a problem. Science 2018, 361, 1350.

[5]

Toumey, C. Notes on environmental nanoscience. Nat. Nanotechnol. 2020, 15, 250–251.

[6]

Jepson, P. D.; Law, R. J. Persistent pollutants, persistent threats. Science 2016, 352, 1388–1389.

[7]

Vaccher, V.; Marchand, P.; Picherot, M.; Dervilly-Pinel, G.; Lesquin, E.; Brosseaud, A.; Venisseau, A.; Le Bizec, B. Field investigation to determine the environmental source of PCBs in a pig farm. Food Chem. 2018, 245, 394–401.

[8]

Lauby-Secretan, B.; Loomis, D.; Grosse, Y.; Ghissassi, F. E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 2013, 14, 287–288.

[9]

Shi, J. C.; Xiang, L.; Luan, H. M.; Wei, Y. F.; Ren, H. L.; Chen, P. C. The health concern of polychlorinated biphenyls (PCBs) in a notorious e-waste recycling site. Ecotox. Environ. Safe. 2019, 186, 109817.

[10]

Wolska, L.; Mechlińska, A.; Rogowska, J.; Namieśnik, J. Sources and fate of PAHs and PCBs in the marine environment. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1172–1189.

[11]

He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. P. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568.

[12]

Huang, L. Y.; Su, G. J.; Zhang, A. Q.; Shi, Y. L.; Xia, C. B.; Lu, H. J.; Li, L. W.; Liu, S.; Zheng, M. H. Degradation of polychlorinated biphenyls using mesoporous iron-based spinels. J. Hazard. Mater. 2013, 261, 451–462.

[13]

Su, G. J.; Lu, H. J.; Zhang, L. X.; Zhang, A. Q.; Huang, L. Y.; Liu, S.; Li, L. W.; Zheng, M. H. Thermal degradation of octachloronaphthalene over as-prepared Fe3O4 micro/nanomaterial and its hypothesized mechanism. Environ. Sci. Technol. 2014, 48, 6899–6908.

[14]

Zahran, E. M.; Bedford, N. M.; Nguyen, M. A.; Chang, Y. J.; Guiton, B. S.; Naik, R. R.; Bachas, L. G.; Knecht, M. R. Light-activated tandem catalysis driven by multicomponent nanomaterials. J. Am. Chem. Soc. 2014, 136, 32–35.

[15]

Zullo, F. M.; Liu, M. Q.; Zou, S. L.; Yestrebsky, C. L. Mechanistic and computational studies of PCB 151 dechlorination by zero valent magnesium for field remediation optimization. J. Hazard. Mater. 2017, 337, 55–61.

[16]

Feng, X. B.; Tian, M. J.; He, C.; Li, L.; Shi, J. W.; Yu, Y. K.; Cheng, J. Yolk–shell-like mesoporous CoCrO x with superior activity and chlorine resistance in dichloromethane destruction. Appl. Catal. B: Environ. 2020, 264, 118493.

[17]

Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

[18]

Liu, W. G.; Zhang, L. L.; Liu, X. Y.; Liu, X.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeN x species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

[19]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[20]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[21]

Cui, X. J.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Chem. 2018, 1, 385–397.

[22]

Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 136, e202315032.

[23]

Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.

[24]

Yang, J. R.; Zhu, C. X.; Wang, D. S. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem., Int. Ed. 2024, 63, e202406883.

[25]

Gao, Y.; Wang, D. S. Atomically dispersed catalysts: Precise synthesis, structural regulation, and structure–activity relationship. CCS Chem. 2024, 6, 833–855.

[26]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[27]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[28]

Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.

[29]

Wang, Y.; Zheng, M.; Li, Y. R.; Zhu, L. D.; Li, H. R.; Wang, Q. S.; Zhao, H.; Zhang, J. W.; Dong, Y. M.; Zhu, Y. F. Atomically dispersed NiO x cluster on high-index Pt facets boost ethanol electrooxidation through long-range synergistic sites. Adv. Powder Mater. 2024, 3, 100244.

[30]

He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; Xiao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

[31]

Jin, S.; Ni, Y. X.; Hao, Z. M.; Zhang, K.; Lu, Y.; Yan, Z. H.; Wei, Y. J.; Lu, Y. R.; Chan, T. S.; Chen, J. A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 21885–21889.

[32]

Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

[33]

Ma, F. Y.; Zhang, P. F.; Zheng, X. B.; Chen, L.; Li, Y. R.; Zhuang, Z. C.; Fan, Y. M.; Jiang, P.; Zhao, H.; Zhang, J. W. et al. Steering the site distance of atomic Cu–Cu pairs by first-shell halogen coordination boosts CO2-to-C2 selectivity. Angew. Chem., Int. Ed. 2024, 63, e202412785.

[34]

Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d-p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem. 2024, 136, e202404968.

[35]

Wang, B. Q.; Yang, X.; Xie, C. B.; Liu, H.; Ma, C.; Zhang, Z. D.; Zhuang, Z. C.; Han, A. J.; Zhuang, Z. B.; Li, L. B. et al. A general metal ion recognition strategy to mediate dual-atomic-site catalysts. J. Am. Chem. Soc. 2024, 146, 24945–24955.

[36]

Wang, D. S. Interface matters: How to print single atoms. Sci. China Mater. 2024, 67, 1002–1003.

[37]

Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Huang, Z. G.; Lu, Y. H.; Gao, M. X.; Pan, H. G. Realizing 6.7 wt.% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 2021, 14, 2302–2313.

[38]

Liu, Y. F.; Zhong, K.; Luo, K.; Gao, M. X.; Pan, H. G.; Wang, Q. D. Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. J. Am. Chem. Soc. 2009, 131, 1862–1870.

[39]

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

[40]

Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., In. Ed. 2020, 59, 2688–2694.

[41]

Wang, B. Q.; Wang, M.; Fan, Z. T.; Ma, C.; Xi, S. B.; Chang, L. Y.; Zhang, M. S.; Ling, N.; Mi, Z. Y.; Chen, S. H. et al. Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts. Nat. Commun. 2024, 15, 1719.

[42]

Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.

[43]

Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H. J.; Spliethoff, B.; Weidenthaler, C.; Schüth, F. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat. Mater. 2014, 13, 293–300.

[44]

Zhou, Y. Z.; Tao, X. F.; Chen, G. B.; Lu, R. H.; Wang, D.; Chen, M. X.; Jin, E. Q.; Yang, J.; Liang, H. W.; Zhao, Y. et al. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat. Commun. 2020, 11, 5892.

[45]

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

[46]

Pang, Y. P.; Liu, Y. F.; Gao, M. X.; Ouyang, L. Z.; Liu, J. W.; Wang, H.; Zhu, M.; Pan, H. G. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures. Nat. Commun. 2014, 5, 3519.

[47]

Lefèvre, M.; Dodelet, J. P.; Bertrand, P. Molecular oxygen reduction in PEM fuel cells: Evidence for the simultaneous presence of two active sites in Fe-based catalysts. J. Phys. Chem. B 2002, 106, 8705–8713.

[48]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem. 2022, 134, e202207268.

[49]

Liu, L. N.; Meng, Y.; Liang, J.; Xia, D.; Sun, Y. F. Low-temperature decomposition of Aroclor 1254 over AC-supported Ni-Fe bimetallic catalysts: Kinetic and thermodynamic study. Sci. Total Environ. 2019, 666, 591–597.

[50]

Mandal, S.; Sathish, M.; Saravanan, G.; Datta, K. K. R.; Ji, Q. M.; Hill, J. P.; Abe, H.; Honma, I.; Ariga, K. Open-mouthed metallic microcapsules: Exploring performance improvements at agglomeration-free interiors. J. Am. Chem. Soc. 2010, 132, 14415–14417.

[51]

He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X. Metal-organic framework based microcapsules. Angew. Chem. 2018, 130, 10305–10309.

[52]

Tan, L.; Lu, S. Y.; Fang, Z. Q.; Cheng, W.; Tsang, E. P. Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles. Appl. Catal. B: Environ. 2017, 200, 200–210.

[53]

Li, N.; Xing, X.; Cheng, J.; Zhang, Z. S.; Hao, Z. P. Influence of oxygen and water content on the formation of polychlorinated organic by-products from catalytic degradation of 1,2-dichlorobenzene over a Pd/ZSM-5 catalyst. J. Hazard. Mater. 2021, 403, 123952.

[54]

Li, Q. Q.; Huang, X. C.; Su, G. J.; Zheng, M. H.; Huang, C. H.; Wang, M. J.; Ma, C. Y.; Wei, D. The regular/persistent free radicals and associated reaction mechanism for the degradation of 1,2,4-trichlorobenzene over different MnO2 polymorphs. Environ. Sci. Technol. 2018, 52, 13351–13360.

[55]

Li, Z. Y.; Jibran, M.; Sun, X.; Pratt, A.; Wang, B.; Yamauchi, Y.; Ding, Z. J. Enhancement of the spin polarization of an Fe3O4(100) surface by nitric oxide adsorption. Phys. Chem. Chem. Phys. 2018, 20, 15871–15875.

[56]

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

Nano Research
Article number: 94907133
Cite this article:
Wang B, Han X, Sun J, et al. Single-atom iron on semi-hollow carbon synthesized by chemical-waste-vapor assistance: A superior catalyst for polychlorinated biphenyls degradation. Nano Research, 2025, 18(2): 94907133. https://doi.org/10.26599/NR.2025.94907133
Topics:

217

Views

22

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 October 2024
Revised: 10 November 2024
Accepted: 12 November 2024
Published: 13 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return