AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A strategy to improve the robustness of bound states in the continuum

Peiwen RenZhuo HuangRenxian GaoXiaoxiang DongGuoya SunJian-Feng Li ( )Zhilin Yang ( )
College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

The magnetic resonance boosted by the all-dielectric MoS2 system exhibits a Q factor of up to 107 and displays an exceptional robustness over a broad range of geometrical parameters.

Abstract

Bound states in the continuum (BICs) supported by dielectric metasurfaces have significantly propelled the progress in optical technologies, notably for manipulating potent light-matter interactions. However, achieving a robust quasi-BIC mode with high Q factor by adjusting geometric parameters remains a challenge, primarily the Q factors strongly depend on the asymmetric parameters and the stringent fabrication requirements. Here, we propose a novel strategy to enhance the robustness of the Q factor through the continuous excitation of the magnetic dipole mode with low energy loss. Through a specialized multi-cell structure, the nanoarrays can continuously excite the magnetic dipoles contributed by different structural components over a broad range of geometrical parameters, exhibiting exceptional robustness and high quality resonance. This work provides a theoretical scheme that offers new directions for obtaining robust high Q resonances and developing potential applications for high-performance optical devices.

Electronic Supplementary Material

Download File(s)
7132_ESM.pdf (1.7 MB)

References

[1]

Kühner, L.; Sortino, L.; Berté, R.; Wang, J.; Ren, H. R.; Maier, S. A.; Kivshar, Y.; Tittl, A. Radial bound states in the continuum for polarization-invariant nanophotonics. Nat. Commun. 2022, 13, 4992.

[2]

Kang, M.; Zhang, S. P.; Xiao, M.; Xu, H. X. Merging bound states in the continuum at off-high symmetry points. Phys. Rev. Lett. 2021, 126, 117402.

[3]

Deriy, I.; Toftul, I.; Petrov, M.; Bogdanov, A. Bound states in the continuum in compact acoustic resonators. Phys. Rev. Lett. 2022, 128, 084301.

[4]

Marinica, D. C.; Borisov, A. G.; Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 2008, 100, 183902.

[5]

Plotnik, Y.; Peleg, O.; Dreisow, F.; Heinrich, M.; Nolte, S.; Szameit, A.; Segev, M. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 2011, 107, 183901.

[6]

Hsu, C. W.; Zhen, B.; Lee, J.; Chua, S. L.; Johnson, S. G.; Joannopoulos, J. D.; Soljačić, M. Observation of trapped light within the radiation continuum. Nature  2013, 499, 188–191.

[7]

Tian, J. Y.; Luo, H.; Li, Q.; Pei, X. L.; Du, K. K.; Qiu, M. Near-infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures. Laser Photon. Rev. 2018, 12, 1800076.

[8]

Fan, K. B.; Suen, J. Y.; Liu, X. Y.; Padilla, W. J. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 2017, 4, 601–604.

[9]

Hu, P.; Wang, J. J.; Jiang, Q.; Wang, J.; Shi, L.; Han, D. Z.; Zhang, Z. Q.; Chan, C. T.; Zi, J. Global phase diagram of bound states in the continuum. Optica 2022, 9, 1353–1361.

[10]

Koshelev, K.; Lepeshov, S.; Liu, M. K.; Bogdanov, A.; Kivshar, Y. Asymmetric metasurfaces with high- Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 2018, 121, 193903.

[11]

Liu, Z. J.; Xu, Y.; Lin, Y.; Xiang, J.; Feng, T. H.; Cao, Q. T.; Li, J. T.; Lan, S.; Liu, J. High- Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett. 2019, 123, 253901.

[12]

Koshelev, K.; Tang, Y. T.; Li, K.; Choi, D. Y.; Li, G. X.; Kivshar, Y. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 2019, 6, 1639–1644.

[13]

Liang, Y.; Koshelev, K.; Zhang, F. C.; Lin, H.; Lin, S. R.; Wu, J. Y.; Jia, B. H.; Kivshar, Y. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020, 20, 6351–6356.

[14]

Romano, S.; Mangini, M.; Penzo, E.; Cabrini, S.; De Luca, A. C.; Rendina, I.; Mocella,V.; Zito, G. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum. ACS Nano 2020, 14, 15417–15427.

[15]

Murai, S.; Abujetas, D. R.; Castellanos, G. W.; Sánchez-Gil, J. A.; Zhang, F. F.; Rivas, J. G. Bound states in the continuum in the visible emerging from out-of-plane magnetic dipoles. ACS Photonics 2020, 7, 2204–2210.

[16]

Jahani, Y.; Arvelo, E. R.; Yesilkoy, F.; Koshelev, K.; Cianciaruso, C.; De Palma, M.; Kivshar, Y.; Altug, H. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat. Commun. 2021, 12, 3246.

[17]

Yesilkoy, F.; Arvelo, E. R.; Jahani, Y.; Liu, M. K.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 2019, 13, 390–396.

[18]

Wang, Y. H.; Fan, Y. B.; Zhang, X. D.; Tang, H. J.; Song, Q. H.; Han, J. C.; Xiao, S. M. Highly controllable etchless perovskite microlasers based on bound states in the continuum. ACS Nano 2021, 15, 7386–7391.

[19]

Hwang, M. S.; Lee, H. C.; Kim, K. H.; Jeong, K. Y.; Kwon, S. H.; Koshelev, K.; Kivshar, Y.; Park, H. G. Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun. 2021, 12, 4135.

[20]

Kodigala, A.; Lepetit, T.; Gu, Q.; Bahari, B.; Fainman, Y.; Kanté, B. Lasing action from photonic bound states in continuum. Nature 2017, 541, 196–199.

[21]

Hu, H. Y.; Weber, T.; Bienek, O.; Wester, A.; Hüttenhofer, L.; Sharp, I. D.; Maier, S. A.; Tittl, A.; Cortés, E. Catalytic metasurfaces empowered by bound states in the continuum. ACS Nano 2022, 16, 13057–13068.

[22]

Bijloo, F.; Murzyn, K.; van Emmerik, F.; den Boef, A. J.; Kraus, P. M.; Koenderink, A. F. Near-unity all-optical modulation of third-harmonic generation with a Fano-resonant dielectric metasurface. Nano Lett. 2024, 24, 12942–12947.

[23]

Bernhardt, N.; Koshelev, K.; White, S. J. U.; Meng, K. W. C.; Fröch, J. E.; Kim, S.; Tran, T. T,; Choi, D. Y,; Kivshar, Y.; Solntsev, A. S. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett. 2020, 20, 5309–5314.

[24]

Koshelev, K.; Kruk, S.; Melik-Gaykazyan, E.; Choi, J. H.; Bogdanov, A.; Park, H. G.; Kivshar, Y. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 2020, 367, 288–292.

[25]

Park, J. S.; Li, C. T.; Kim, K. H.; Tang, Y. K.; Murphey, C. G. E.; Teitsworth, T. S.; Kim, S.; Harutyunyan, H.; Cahoon, J. F. Optical nonlinearity in silicon nanowires enabled by bound states in the continuum. ACS Nano 2023, 17, 11729–11738.

[26]

Staude, I.; Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photonics 2017, 11, 274–284.

[27]

Koshelev, K.; Bogdanov, A.; Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. 2019, 64, 836–842.

[28]

Campione, S.; Liu, S.; Basilio, L. I.; Warne, L. K.; Langston, W. L.; Luk, T. S.; Wendt, J. R.; Reno, J. L.; Keeler, G. A.; Brener, I. et al. Broken symmetry dielectric resonators for high quality factor fano metasurfaces. ACS Photonics 2016, 3, 2362–2367.

[29]

Fu, Y. H.; Kuznetsov, A. I.; Miroshnichenko, A. E.; Yu, Y. F.; Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 2013, 4, 1527.

[30]

Evlyukhin, A. B.; Novikov, S. M.; Zywietz, U.; Eriksen, R. L.; Reinhardt, C.; Bozhevolnyi, S. I.; Chichkov, B. N. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 2012, 12, 3749–3755.

[31]

Yang, C. Y.; Yang, J. H.; Yang, Z. Y.; Zhou, Z. X.; Sun, M. G.; Babicheva, V. E.; Chen, K. P. Nonradiating silicon nanoantenna metasurfaces as narrowband absorbers. ACS Photonics 2018, 5, 2596–2601.

[32]

Carletti, L.; Koshelev, K.; De Angelis, C.; Kivshar, Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett. 2018, 121, 033903.

[33]

Kruk, S.; Kivshar, Y. Functional meta-optics and nanophotonics governed by mie resonances. ACS Photonics 2017, 4, 2638–2649.

[34]

Liu, S.; Sinclair, M. B.; Mahony, T. S.; Jun, Y. C.; Campione, S.; Ginn, J.; Bender, D. A.; Wendt, J. R.; Ihlefeld, J. F.; Clem, P. G. et al. Optical magnetic mirrors without metals. Optica 2014, 1, 250–256.

[35]

Decker, M.; Staude, I.; Falkner, M.; Dominguez, J.; Neshev, D. N.; Brener, I.; Pertsch, T.; Kivshar, Y. S. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 2015, 3, 813–820.

[36]

Shcherbakov, M. R.; Vabishchevich, P. P.; Shorokhov, A. S.; Chong, K. E.; Choi, D. Y.; Staude, I.; Miroshnichenko, A. E.; Neshev, D. N.; Fedyanin, A. A.; Kivshar, Y. S. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 2015, 15, 6985–6990.

[37]

Yang, G. C.; Dev, S. U.; Allen, M. S.; Allen, J. W.; Harutyunyan, H. Optical bound states in the continuum enabled by magnetic resonances coupled to a mirror. Nano Lett. 2022, 22, 2001–2008.

[38]

Tian, J. Y.; Li, Q.; Belov, P. A.; Sinha, R. K.; Qian, W. P.; Qiu, M. High- Q all-dielectric metasurface: Super and suppressed optical absorption. ACS Photonics 2020, 7, 1436–1443.

[39]

Anthur, A. P.; Zhang, H. Z.; Paniagua-Dominguez, R.; Kalashnikov, D. A.; Ha, S. T.; Maß, T. W. W.; Kuznetsov, A. I.; Krivitsky, L. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett. 2020, 20, 8745–8751.

[40]

Sinev, I. S.; Koshelev, K.; Liu, Z. J.; Rudenko, A.; Ladutenko, K.; Shcherbakov, A.; Sadrieva, Z.; Baranov, M.; Itina, T.; Liu, J. et al. Observation of ultrafast self-action effects in quasi-BIC resonant metasurfaces. Nano Lett. 2021, 21, 8848–8855.

[41]

Cao, F. Z.; Zhou, M. M.; Cheng, C. W.; Li, H. J.; Jia, Q. W.; Jiang, A. W.; Lyu, B.; Liu, D. H.; Han, D. Z; Gwo, S. et al. Interaction of plasmonic bound states in the continuum. Photon. Res. 2023, 11, 724–731.

[42]

You, S.; He, H. X.; Zhang, Y.; Duan, H.; Wang, L. L.; Wang, Y. Y.; Luo, S. Y.; Zhou, C. B. Resonance wavelength stabilization of quasi-bound states in the continuum constructed by symmetry breaking and area compensation. Nano Lett. 2024, 24, 15300–15307.

[43]

Moretti, G. Q.; Tittl, A.; Cortés, E.; Maier, S. A.; Bragas, A. V.; Grinblat, G. Introducing a symmetry-breaking coupler into a dielectric metasurface enables robust high-Q quasi-BICs. Adv. Photonics Res. 2022, 3, 2200111.

[44]

Jin, J. C.; Yin, X. F.; Ni, L. F.; Soljačić, M.; Zhen, B.; Peng, C. Topologically enabled ultrahigh- Q guided resonances robust to out-of-plane scattering. Nature, 2019, 574, 501–504.

[45]

Verre, R.; Baranov, D. G.; Munkhbat, B.; Cuadra, J.; Käll, M.; Shegai, T. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol. 2019, 14, 679–683.

[46]

Ermolaev, G. A.; Stebunov, Y. V.; Vyshnevyy, A. A.; Tatarkin, D. E.; Yakubovsky, D. I.; Novikov, S. M.; Baranov, D. G.; Shegai, T.; Nikitin, A. Y.; Arsenin, A. V. Broadband optical properties of monolayer and bulk MoS2. npj 2D Mater. Appl. 2020, 4, 21.

[47]

Radescu, E. E.; Vaman, G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles, Phys. Rev. E 2002, 65, 046609.

[48]

Wang, R.; Negro, L. D. Engineering non-radiative anapole modes for broadband absorption enhancement of light. Opt. Express 2016, 24, 19048–19062.

[49]

Li, S. Y.; Zhou, C. B.; Liu, T. T.; Xiao, S. Y. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces, Phys. Rev. A 2019, 100, 063803.

[50]

Wang, J. Y.; Yang, W. M.; Sun, G. Y.; He, Y. L.; Ren, P. W.; Yang, Z. L. Boosting anapole-exciton strong coupling in all-dielectric heterostructures. Photonics Res. 2022, 10, 7.

Nano Research
Article number: 94907132
Cite this article:
Ren P, Huang Z, Gao R, et al. A strategy to improve the robustness of bound states in the continuum. Nano Research, 2025, 18(2): 94907132. https://doi.org/10.26599/NR.2025.94907132
Topics:

422

Views

138

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 September 2024
Revised: 09 November 2024
Accepted: 12 November 2024
Published: 07 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return